Skip to main content

Identities for Alternating Inverse Squared Binomial and Harmonic Number Sums

Abstract

We develop new families of closed-form representations of sums of alternating harmonic numbers and reciprocal squared binomial coefficients including integral representations.

This is a preview of subscription content, access via your institution.

References

  1. Adamchik V., Srivastava H.M.: Some series of the zeta and related functions. Analysis 18(2), 131–144 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  2. Borwein J.M., Zucker I.J., Boersma J.: The evaluation of character Euler double sums. Ramanujan J. 15, 377–405 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  3. Choi, J., Cvijović, D.: Values of the polygamma functions at rational arguments. J. Phys. A Math. Theor. 40, 15019–15028 (2007). [Corrigendum, ibidem, 43, 239801 (2010) (1 p)]

  4. Choi, J.: Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl. 2013, 49 (2013)

  5. Choi J., Srivastava H.M.: Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Modell. 54, 2220–2234 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  6. Chu W.: Summation formulae involving harmonic numbers. Filomat 26(1), 143–152 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  7. Coffey M.W.: On one dimensional digamma and polygamma series related to the evaluation of Feynman diagrams. J. Comput. Appl. Math. 183, 84–100 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  8. Coffey M.W., Lubbers N.: On generalized harmonic number sums. Appl. Math. Comput. 217, 689–698 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Flajolet P., Salvy B.: Euler sums and contour integral representations. Exp. Math. 7, 15–35 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  10. Kölbig K.: The polygamma function \({\psi \left( x\right) }\) for x = 1/4 and x = 3/4. J. Comput. Appl. Math. 75, 43–46 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  11. Liu H., Wang W.: Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transform. Spec. Funct. 23, 49–68 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  12. Sitaramachandrarao R.: A formula of S. Ramanujan. J. Number Theory 25, 1–19 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  13. Sofo A.: Sums of derivatives of binomial coefficients. Adv. Appl. Math. 42, 123–134 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  14. Sofo A.: Integral forms associated with harmonic numbers. Appl. Math. Comput. 207, 365–372 (2009)

    MATH  Google Scholar 

  15. Sofo A.: Integral identities for sums. Math. Commun. 13, 303–309 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Sofo, A.: Computational Techniques for the Summation of Series. Kluwer Academic/Plenum Publishers, New York (2003)

  17. Sofo, A.: Generalized hypergeometric function identities at argument \({\pm}\) 1. Integral Transform. Spec. Funct. 25, 909–921 (2014)

  18. Sofo A., Srivastava H.M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan J. 25, 93–113 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  19. Sofo A.: Summation formula involving harmonic numbers. Anal. Math. 379, 51–64 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  20. Sofo, A.: Second order alternating harmonic number sums. Filomat (2015, in press)

  21. Sofo A.: Quadratic alternating harmonic number sums. J. Number Theory 154, 144–159 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  22. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, London (2001)

  23. Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam (2012)

  24. Wang W., Jia C.: Harmonic number identities via the Newton–Andrews method. Ramanujan J. 35, 263–285 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  25. Wei C., Gong D.: The derivative operator and harmonic number identities. Ramanujan J. 34, 361–371 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  26. Zheng D.Y.: Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl. 335(1), 692–706 (2007)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Sofo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sofo, A. Identities for Alternating Inverse Squared Binomial and Harmonic Number Sums. Mediterr. J. Math. 13, 1407–1418 (2016). https://doi.org/10.1007/s00009-015-0574-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0574-7

Mathematics Subject Classification

  • Primary 05A10
  • 05A19
  • 33C20
  • Secondary 11B65
  • 11B83
  • 11M06

Keywords

  • Combinatorial series identities
  • summation formulas
  • partial fraction approach
  • alternating harmonic numbers
  • squared binomial coefficients
  • polylogarithm function