Skip to main content
Log in

Identities for Alternating Inverse Squared Binomial and Harmonic Number Sums

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We develop new families of closed-form representations of sums of alternating harmonic numbers and reciprocal squared binomial coefficients including integral representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamchik V., Srivastava H.M.: Some series of the zeta and related functions. Analysis 18(2), 131–144 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borwein J.M., Zucker I.J., Boersma J.: The evaluation of character Euler double sums. Ramanujan J. 15, 377–405 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, J., Cvijović, D.: Values of the polygamma functions at rational arguments. J. Phys. A Math. Theor. 40, 15019–15028 (2007). [Corrigendum, ibidem, 43, 239801 (2010) (1 p)]

  4. Choi, J.: Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl. 2013, 49 (2013)

  5. Choi J., Srivastava H.M.: Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Modell. 54, 2220–2234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chu W.: Summation formulae involving harmonic numbers. Filomat 26(1), 143–152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coffey M.W.: On one dimensional digamma and polygamma series related to the evaluation of Feynman diagrams. J. Comput. Appl. Math. 183, 84–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coffey M.W., Lubbers N.: On generalized harmonic number sums. Appl. Math. Comput. 217, 689–698 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Flajolet P., Salvy B.: Euler sums and contour integral representations. Exp. Math. 7, 15–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kölbig K.: The polygamma function \({\psi \left( x\right) }\) for x = 1/4 and x = 3/4. J. Comput. Appl. Math. 75, 43–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu H., Wang W.: Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transform. Spec. Funct. 23, 49–68 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sitaramachandrarao R.: A formula of S. Ramanujan. J. Number Theory 25, 1–19 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sofo A.: Sums of derivatives of binomial coefficients. Adv. Appl. Math. 42, 123–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sofo A.: Integral forms associated with harmonic numbers. Appl. Math. Comput. 207, 365–372 (2009)

    MATH  Google Scholar 

  15. Sofo A.: Integral identities for sums. Math. Commun. 13, 303–309 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Sofo, A.: Computational Techniques for the Summation of Series. Kluwer Academic/Plenum Publishers, New York (2003)

  17. Sofo, A.: Generalized hypergeometric function identities at argument \({\pm}\) 1. Integral Transform. Spec. Funct. 25, 909–921 (2014)

  18. Sofo A., Srivastava H.M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan J. 25, 93–113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sofo A.: Summation formula involving harmonic numbers. Anal. Math. 379, 51–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sofo, A.: Second order alternating harmonic number sums. Filomat (2015, in press)

  21. Sofo A.: Quadratic alternating harmonic number sums. J. Number Theory 154, 144–159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, London (2001)

  23. Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam (2012)

  24. Wang W., Jia C.: Harmonic number identities via the Newton–Andrews method. Ramanujan J. 35, 263–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wei C., Gong D.: The derivative operator and harmonic number identities. Ramanujan J. 34, 361–371 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zheng D.Y.: Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl. 335(1), 692–706 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Sofo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofo, A. Identities for Alternating Inverse Squared Binomial and Harmonic Number Sums. Mediterr. J. Math. 13, 1407–1418 (2016). https://doi.org/10.1007/s00009-015-0574-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0574-7

Mathematics Subject Classification

Keywords

Navigation