Skip to main content
Log in

Numerical Solution of Time Fractional Burgers Equation by Cubic B-spline Finite Elements

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We present some numerical examples which support numerical results for the time fractional Burgers equation with various boundary and initial conditions obtained by collocation method using cubic B-spline base functions. The aim of this paper is to show that the finite element method based on the cubic B-spline collocation method approach is also suitable for the treatment of the fractional differential equations. The results of numerical experiments are compared with analytical solution to confirm the accuracy and efficiency of the presented scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller K.S., Ross B.: An Introductional the Fractional Calculus and Fractional Differential Equations. Academic Press, New York, London (1974)

    Google Scholar 

  2. Oldham K.B., Spanier J.: The Fractional Calculus. Academic, New York (1974)

    MATH  Google Scholar 

  3. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

  5. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  6. Metzler R., Klafter J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galeone L., Garrappa R.: On multistep methods for differential equations of fractional order. Mediterr. J. Math. 3, 565–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Esen A., Ucar Y., Yagmurlu N., Tasbozan O.: A galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations. Math. Model. Anal. 18, 260–273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tasbozan, O., Esen, A., Yagmurlu, N.M., Ucar, Y.: A numerical solution to fractional diffusion equation for force-free case. Abstr. Appl. Anal., 6 (2013). doi:10.1155/2013/187383

  10. Jalilian Y., Jalilian R.: Existence of solution for delay fractional differential equations. Mediterr. J. Math. 10, 1731–1747 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wei L., Dai H., Zhang D., Si Z.: Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 51, 175–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nyamoradi N.: Infinitely many solutions for a class of fractional boundary value problems with dirichlet boundary conditions. Mediterr. J. Math. 11, 75–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garrappa, R., Popolizio, M.: Exponential quadrature rules for linear fractional differential equations. Mediterr. J. Math. 12, 219–244 (2015)

  14. Logan, D.L.: A First Course in the Finite Element Method (4th edn). Thomson, Toronto (2007)

  15. Debnath L.: Partial Differential Equations for Scientists and Engineers. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  16. Kutluay S., Esen A., Dag I.: Numerical solutions of the Burgers’ equation by the least squares quadratic B-spline finite element method. J. Comput. Appl. Math. 167, 21–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gardner L.R.T., Gardner G.A., Dogan A.: A Petrov-Galerkin finite element scheme for Burgers equation. Arab. J. Sci. Eng. 22, 99–109 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Ali, A.H.A., Gardner, L.R.T., Gardner, G.A.: A collocation method for Burgers equation using cubic splines. Comput. Meth. Appl. Mech. Eng. 100, 325–337 (1992)

  19. Raslan K.R.: A collocation solution for Burgers equation using quadratic B-spline finite elements. Intern. J. Comput. Math. 80, 931–938 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dag I., Irk D., Saka B.: A numerical solution of Burgers equation using cubic B-splines. Appl. Math. Comput. 163, 199–211 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Ramadan M.A., El-Danaf T.S., Abd Alaal F.E.I.: Numerical solution of Burgers equation using septic B-splines. Chaos, Solitons Fractals 26, 795–804 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sugimoto N.: Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Momani S.: Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos, Solitons Fractals 28, 930–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Inc M.: The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Prenter P.M.: Splines and Variasyonel Methods. John Wiley, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orkun Tasbozan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esen, A., Tasbozan, O. Numerical Solution of Time Fractional Burgers Equation by Cubic B-spline Finite Elements. Mediterr. J. Math. 13, 1325–1337 (2016). https://doi.org/10.1007/s00009-015-0555-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0555-x

Mathematics Subject Classification

Keywords

Navigation