Abstract
In this paper, some classes of local polynomial functions on abelian groups are characterized by the properties of their variety. For this characterization, we introduce a numerical quantity depending on the variety of the local polynomial only. Moreover, we show that the known characterization of polynomials among generalized polynomials can be simplified: a generalized polynomial is a polynomial if and only if its variety contains finitely many linearly independent additive functions.
This is a preview of subscription content, access via your institution.
References
Djokovič, D.Ž.: A representation theorem for (X 1 − 1)(X 2 − 1) . . . (X n − 1) and its applications. Ann. Pol. Math. 22, 189–198 (1969/1970)
Fréchet M.: Une definition fonctionelle des polynomes. Nouv. Ann. 9, 145– 162 (1909)
Laczkovich M.: Polynomial mappings on abelian groups. Aequ. Math. 68(3), 177–199 (2004)
Laczkovich, M.: Local spectral synthesis on abelian groups. Acta Math. Hung. 143(2), 313–329 (2014)
Mazur S., Orlicz W.: Grundlegende Eigenschaften der Polynomischen Operationen I. Stud. Math. 5, 50–68 (1934)
Prager W., Schwaiger J.: Generalized polynomials in one and in several variables. Math. Pannon. 20(2), 189–208 (2009)
Reich, L., Schwaiger, J.: On polynomials in additive and multiplicative functions. In: Functional equations: history, applications and theory, Math. Appl., pp. 127–160. Reidel, Dordrecht (1984)
Schwaiger J., Prager W.: Polynomials in additive functions and generalized polynomials. Demonstr. Math. 41(3), 589–613 (2008)
Székelyhidi, L.: On Fréchet’s functional equation. Monatsh. für Math. to appear (2014). doi:10.1007/500605-013-0-590-2
Székelyhidi, L.: Convolution type functional equations on topological abelian groups. World Scientific Publishing Co. Inc., Teaneck, NJ (1991)
Székelyhidi L.: Polynomial functions and spectral synthesis. Aequ. Math. 70(1–2), 122–130 (2005)
Székelyhidi L.: Noetherian rings of polynomial functions on Abelian groups. Aequationes Math 84(1–2), 41–50 (2012)
Lijn G.: La définition fonctionnelle des polynômes dans les groupes abéliens. Fund. Math 33, 42–50 (1939)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. NK-81402.
Rights and permissions
About this article
Cite this article
Almira, J.M., Székelyhidi, L. Characterization of Classes of Polynomial Functions. Mediterr. J. Math. 13, 301–307 (2016). https://doi.org/10.1007/s00009-014-0463-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00009-014-0463-5