Skip to main content
Log in

Solving a Generalized Gauss Problem

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We solve a generalized Gauss problem in the Euclidean plane which states that: Given a convex quadrilateral, a positive number (weight) that corresponds to each of its vertices and a length of a linear segment which connects two mobile interior points of the quadrilateral find the minimum weighted network, which connects two of the vertices with one interior point and the other two with another interior point (Generalized Gauss tree). Furthermore, we introduce a generalized Gauss variable which corresponds to the unknown weight of the given distance which connects the two mobile interior points and obtain a degenerate generalized Gauss tree which corresponds to a specific value of the generalized Gauss variable that minimizes the length of the induced generalized Gauss trees and the weighted Fermat–Torricelli tree for a specific value of the generalized Gauss variable that maximizes the length of the induced generalized Gauss trees. Following this technique, we introduce a new class of generalized Gauss trees that we call absorbing generalized Gauss trees and a new class of Fermat–Torricelli trees that we call absorbing Fermat–Torricelli trees with respect to the sum of the four given weights of the convex quadrilateral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boltyanski, V., Martini, H., Soltan, V.: Geometric Methods and Optimization Problems. Kluwer, Dordrecht (1999)

  2. Bopp, K.: Uber das Kurzeste Verbindungssystem zwischen vier Punkten. Dissertation, Gottingen (1879)

  3. Cieslik, D.: Shortest Connectivity. An Introduction with Applications in Phylogeny, Springer, New York (2005)

  4. Courant, R., Robbins, H.: What is Mathematics? Oxford University Press, New York (1951)

  5. Fagnano, G.F.: Problemata quaedam ad methodum maximorum et minimorum spectantia. Nova Acta Eruditorum (1775). Mensis Iunii (published in 1779), 281–303

  6. Gilbert E.N, Pollak H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gueron S, Tessler R.: The Fermat–Steiner problem. Am. Math. Mon. 109, 443–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ivanov, A.O., Tuzhilin, A.A.: Weighted minimal binary trees (Russian). Uspekhi Mat. Nauk 50(3), 155–156 (1995); translation in Russ. Math. Surv. 50(3), 623–624 (1995)

  9. Ivanov, A.O., Tuzhilin, A.A.: Branching Solutions to One-Dimensional Variational Problems. World Scientific Publishing Co., Inc., River Edge (2001)

  10. Kupitz Y.S, Martini H: Geometric aspects of the generalized Fermat–Torricelli problem. Bolyai Soc. Math. Stud. 6, 55–127 (1997)

    MathSciNet  Google Scholar 

  11. Plastria F.: Four-point Fermat location problems revisited. New proofs and extensions of old results. IMA J. Manag. Math. 17(4), 387–396 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pólya, G.: Induction and Analogy in Mathematics. Mathematics and Plausible Reasoning, vol. I. Princeton University Press, Princeton (1954)

  13. Weiszfeld E.: Sur le point lequel la somme des distances de n points donnes est minimum. Tohoku Math. J. 43, 355–386 (1937)

    MATH  Google Scholar 

  14. Weiszfeld E.: On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 167, 7–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zachos A.N, Zouzoulas G: An evolutionary structure of convex quadrilaterals. J. Convex Anal. 15(2), 411–426 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Zachos A.N, Zouzoulas G: An evolutionary structure of convex quadrilaterals. Part II. J. Convex Anal. 20(2), 483–493 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Zachos A.: A weighted Steiner minimal tree for convex quadrilaterals on the two-dimensional K-plane. J. Convex Anal. 18(1), 139–152 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios N. Zachos.

Additional information

To Evangelista Torricelli (1608–1647)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zachos, A.N. Solving a Generalized Gauss Problem. Mediterr. J. Math. 12, 1069–1083 (2015). https://doi.org/10.1007/s00009-014-0438-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-014-0438-6

Mathematics Subject Classification

Keywords

Navigation