Advertisement

Mediterranean Journal of Mathematics

, Volume 12, Issue 2, pp 555–572 | Cite as

On the Convergence of Halley’s Method for Multiple Polynomial Zeros

  • Petko D. Proinov
  • Stoil I. Ivanov
Article

Abstract

In this paper, we investigate the local convergence of Halley’s method for the computation of a multiple polynomial zero with known multiplicity. We establish two local convergence theorems for Halley’s method for multiple polynomial zeros under different initial conditions. The convergence of these results is cubic right from the first iteration. Also we find an initial condition which guarantees that an initial guess is an approximate zero of the second kind for Halley’s method. All of the results are new even in the case of simple zeros.

Mathematics Subject Classification (2010)

Primary 65H04 Secondary 12Y05 

Keywords

Halley’s method polynomial zeros multiple zeros local convergence error estimates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bi W., Ren H., Wu Q.: Convergence of the modified Halley’s method for multiple zeros under Hölder continuous derivative. Numer. Alg. 58, 497–512 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chun C., Neta B.: A third-order modification of Newton’s method for multiple roots. Appl. Math. Comput. 211, 474–479 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dočev K.: Über Newtonsche iterationen. C. R. Acad. Bulg. Sci. 36, 695–701 (1962)Google Scholar
  4. 4.
    Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Salanova, M.A.: Halley’s method: perhaps the most rediscovered method in the world (Spanish), In: Margarita Mathematica, Univ. La Rioja, Logroño., pp. 205–220 (2001)Google Scholar
  5. 5.
    Halley E.: A new, exact, and easy method of finding the roots of any equations generally. and that without any previous reduction (Latin), [English translation: Philos. Trans. Roy. Soc. Abridged. Vol. III, London. pp. 640–649 (1809)]. Trans. Roy. Soc. London. 18, 136–148 (1694)CrossRefGoogle Scholar
  6. 6.
    Hansen E., Patrick M.: A family of root finding methods. Numer. Math. 27, 257–269 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Homeier H.H.H.: On Newton-type methods for multiple roots with cubic convergence. J. Comput. Appl. Math. 231, 249–254 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kalantari B., Kalantari I., Zaare-Nahandi R.: A basic family of iteration functions for polynomial root finding and its characterizations. J. Comput. Appl. Math. 80, 209–226 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Li S.G., Li H., Cheng L.: Some second-derivative-free variants of Halley’s method for multiple roots. Appl. Math. Comput. 215, 2192–2198 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    McNamee, J.M.: Numerical methods for roots of polynomials. Part I, Studies in Computational Mathematics, vol. 14. Elsevier, Amsterdam (2007)Google Scholar
  11. 11.
    Neta B.: New third order nonlinear solvers for multiple roots. Appl. Math. Comput. 202, 162–170 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Obreshkov N.: On the numerical solution of equations (Bulgarian). Annuaire Univ. Sofia Fac. Sci. Phys. Math. 56, 73–83 (1963)zbMATHGoogle Scholar
  13. 13.
    Osada N.: Asymptotic error constants of cubically convergent zero finding methods. J. Comput. Appl. Math. 196, 347–357 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Pan V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39, 187–220 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Proinov P.D.: General local convergence theory for a class of iterative processes and its applications to Newton’s method. J. Complex. 25, 38–62 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Proinov P.D.: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complex. 26, 3–42 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ren H., Argyros I.K.: Convergence radius of the modified Newton method for multiple zeros under Hölder continuous derivative. Appl. Math. Comput. 217, 612–621 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Renegar J.: On the worst-case arithmetic complexity of approximating zeros of polynomials. J. Complex. 3, 90–113 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sharma J.R., Sharma R.: New third and fourth order nonlinear solvers for computing multiple roots. Appl. Math. Comput. 217, 9756–9764 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Scavo T.R., Thoo J.B.: On the geometry of Halley’s Method. Amer. Math. Month. 102, 417–433 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Schröder E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2, 317–365 (1870)zbMATHGoogle Scholar
  22. 22.
    Smale, S.: Newton’s method estimates from data at one point, In: Ewing, R., Gross, K., Martin, C. (eds.) The Merging of Disciplines: New Directions Pure, Applied, and Computational Mathematics, Springer. pp. 185–196 (1986)Google Scholar
  23. 23.
    Tilli, P.: Convergence conditions of some methods for the simultaneous computation of polynomial zeros, Calcolo. 35, 3–15 (1998)Google Scholar
  24. 24.
    Traub, J.F.: Iterative Methods for the Solution of Equations, 2nd edn. Chelsea Publishing Company, New York (1982)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsUniversity of PlovdivPlovdivBulgaria
  2. 2.Faculty of Physics and Engineering TechnologiesUniversity of PlovdivPlovdivBulgaria

Personalised recommendations