Skip to main content
Log in

A Note on Quasi-paranormal Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let T be a bounded linear operator on an infinite dimensional complex Hilbert space. In this paper, we introduce the new class, denoted \({{\mathcal{QP}}}\) , of operators satisfying \({{\|T^{2}x\|^{2}\leq \|T^{3}x\|\|Tx\|}}\) for all \({{x \in \mathcal{H}}}\). This class includes the classes of paranormal operators and quasi-class A operators. We prove basic structural properties of these operators. Using these results, we also prove that if E is the Riesz idempotent for a nonzero isolated point λ0 of the spectrum of \({{T \in \mathcal{QP}}}\) , then E is self-adjoint if and only if \({{N(T-\lambda_{0}) \subseteq N(T^{*}-\overline{\lambda}_{0})}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, 2004.

  2. Ando T.: Operators with a norm condition. Acta Sci. Math. (Szeged) 33, 169–178 (1972)

    MathSciNet  MATH  Google Scholar 

  3. Duggal B.P.: Hereditarily normaloid operators. Extracta Math. 20, 203–217 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Furuta T.: On the class of paranormal operators. Proc. Japan Acad. 43, 594–598 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Furuta, Invitation to Linear Operators, CRC Press, 2002.

  6. Furuta T., Ito M., Yamazaki T.: A subclass of paranormal operators including class of log-hyponormal and several related classes. Sci. Math. 1, 389–403 (1998)

    MathSciNet  MATH  Google Scholar 

  7. In Ho Jeon and In Hyoun Kim, On operators satisfying T*|T 2|TT*|T|2 T. Linear Algebra Appl. 418 (2006), 854–862.

  8. C. S. Kubrusly, Hilbert Space Operators A Problem Solving Approach, Birkhäuser, Boston, 2003.

  9. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000.

  10. Sheth I.H.: Quasi-hyponormal operators. Rev. Roumaine Math. Pures Appl. 19, 1049–1053 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Stampfli J.: operators and spectral density. Trans. Amer. Math. Soc. 117, 469–476 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Uchiyama A.: On the Isolated Points of the Spectrum of Paranormal Operators. Integral Equations Operator Theory 55, 145–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Uchiyama A., Tanahashi K.: On the Riesz idempotent of class A operators. Math. Inequal. Appl. 5, 291–298 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Uchiyama A., Tanahashi K.: Bishop’s property (β) for paranormal operators. Oper. Matrices 3, 517–524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Han.

Additional information

This research was supported by the Kyung Hee University Research Fund in 2009 (KHU-20090618).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y.M., Na, W.H. A Note on Quasi-paranormal Operators. Mediterr. J. Math. 10, 383–393 (2013). https://doi.org/10.1007/s00009-012-0176-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-012-0176-6

Mathematics Subject Classification (2010)

Keywords

Navigation