Skip to main content
Log in

Bornological Convergence and Shields

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \({{\fancyscript{S}}}\) be an ideal of subsets of a metric space \({{\langle X, d \rangle}}\) , and for \({{E \subseteq X}}\) , let \({{E^{\varepsilon}}}\) denote the \({{\varepsilon}}\) -enlargement of E. A net of subsets \({\langle A_{i} \rangle}\) of X is called \({{\fancyscript{S}^{-}}}\) -convergent (resp. \({{\fancyscript{S}^{+}}}\) -convergent) to a subset A of X if for each \({{S \in \fancyscript{S}}}\) and each \({{\varepsilon > 0}}\) , we have eventually \({{A \cap S \subseteq A^{\varepsilon}_{i}}}\) (resp \({{A_{i}S \cap A \subseteq A^{\varepsilon})}}\) . The purpose of this article is to give simple necessary and sufficient conditions for the lower and upper \({{\fancyscript{S}}}\) -convergences to be topological on the power set of X and on the closed subsets of X. In the first environment, the condition for upper convergence is stronger than that for lower convergence, while in the second more restrictive environment, it is stronger if and only if \({{\cup\fancyscript{S}}}\) is an open subset of X. In our analysis there arises a pregnant new idea – that of one set serving to shield a fixed subset from closed sets – that we study in detail, and which plays an interesting role in the upper semicontinuity of multifunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch H., Lucchetti R., Wets R.: The topology of the ρ-Hausdorff distance, Ann. Mat. Pura Appl. 160, 303–320 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atsuji M.: Uniform continuity of continuous functions of metric spaces, Pacific J. Math. 8, 11–16 (1958)

    MathSciNet  MATH  Google Scholar 

  3. Attouch H., Wets R.: Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc. 328, 695–730 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Attouch H., Wets R.: Quantitative stability of variational systems: II. A framework for nonlinear conditioning, SIAM J. Optim. 3, 359–381 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke H., Lucet Y., Trienis M.: How to transform one convex function continuously into another. SIAM Rev. 50, 115–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beer G.: Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. Soc. 108, 117–126 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beer G.: Topologies on closed and closed convex sets. Kluwer Acad Publ, Dordrecht (1993)

    MATH  Google Scholar 

  8. Beer G.: Lipschitz regularizations and the convergence of convex functions. Numer. Funct. Anal. Opt 15, 31–46 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beer G.: On metric boundedness structures. Set-Valued Anal 7, 195–208 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beer G.: On convergence to infinity. Monat. Math 129, 267–280 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beer G.: Product metrics and boundedness. Applied Gen. Top 9, 133–142 (2008)

    MathSciNet  Google Scholar 

  12. Beer G.: Operator topologies and graph convergence. J. Convex Anal 16, 687–698 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Beer G., Levi S.: Pseudometrizable bornological convergence is Attouch- Wets convergence. J. Convex Anal 15, 439–453 (2008)

    MathSciNet  MATH  Google Scholar 

  14. BeerG. Levi S.: Gap, Excess and Bornological Convergence. Set-Valued Anal 16, 489–506 (2008)

    Article  MathSciNet  Google Scholar 

  15. Beer G., Levi S.: Strong uniform continuity. J. Math. Anal. Appl 350, 568–589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Beer G., Levi S.: boundedness and bornologies. Top. Appl 156, 1271–1288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Beer G., Levi S.: Uniform continuity, uniform convergence and shields. Set-Valued and Variational Anal 18, 251–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Beer G., Lucchetti R.: Convex optimization and the epi-distance topology. Trans. Amer. Math. Soc 327, 795–813 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Beer G., Naimpally S., Rodríguez-López J.: \({\fancyscript {S}}\) -topologies and bounded convergences. J. Math. Anal. Appl 339, 542–552 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beer G., Théra M.: Attouch-Wets convergence and a differential operator for convex functions. Proc. Amer. Math. Soc 122, 851–858 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Borwein, M. Fabian, and J. Vanderwerff, Locally Lipschitz functions and bornological derivatives, CECM Report no. 93:012.

  22. Borwein J., Montesinos V., Vanderwerff J.: Boundedness, differentiability and extensions of convex functions. J. Convex Anal. 13, 587–602 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Borwein J., Vanderwerff J.: Epigraphical and uniform convergence of convex functions. Trans. Amer. Math. Soc 348, 1617–1631 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Caserta A., Watson S.: The Alexandroff duplicate and its subspaces. Apllied General Top 8, 187–205 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Caterino A., Guazzone S.: Extensions of unbounded topological spaces. Rend. Sem. Mat. Univ. Padova 100, 123–135 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Caterino A., Panduri T., Vipera M.: Boundedness, one-point extensions, and B-extensions. Math. Slovaca 58, 101–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Contesse L., Penot J.-P.: Continuity of polarity and conjugacy for the epidistance topology. J. Math. Anal. Appl 156, 305–328 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Di Maio G., Holà L., Holý D.: Attouch-Wets topology on function spaces. Boll. Un. Mat. Ital. Ser. A 9, 259–272 (1995)

    MATH  Google Scholar 

  29. Di Maio G., Meccariello E., Naimpally S.: Uniformizing (proximal) ∆- topologies. Top. Appl 137, 99–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dolecki S., Lechicki A.: On the structure of upper semicontinuity. J. Math. Anal. Appl 88, 547–554 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dolecki S., Greco G., Lechicki A.: Compactoid and compact filters. Pacific J. Math 117, 69–98 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dolecki S., Rolewicz S.: Metric characterizations of upper semicontinuity. J. Math. Anal. Appl 69, 146–152 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Engelking R.: General topology. Polish Scientific Publishers, Warsaw (1977)

    MATH  Google Scholar 

  34. Hausdorff F.: Erweiterung einer Homöomorphie. Fund. Math 16, 353–360 (1930)

    MATH  Google Scholar 

  35. Hogbe-Nlend H.: Bornologies and functional analysis. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  36. Hu S.-T.: Boundedness in a topological space. J. Math Pures Appl 228, 287–320 (1949)

    Google Scholar 

  37. Kelley J.: General Topology. Van Nostrand, Princeton, NJ (1955)

    MATH  Google Scholar 

  38. Klein E., Thompson A.: Theory of correspondences. Wiley, New York (1984)

    MATH  Google Scholar 

  39. Lechicki A., Levi S., Spakowski A.: Bornological convergences. J. Math. Anal. Appl 297, 751–770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lucchetti R.: Convexity and well-posed problems. Springer Verlag, Berlin (2006)

    MATH  Google Scholar 

  41. Michael E.: A note on closed maps and compact sets. Israel J. Math 2, 173–176 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  42. Penot J.-P.: The cosmic Hausdorff topology, the bounded Hausdorff topology, and continuity of polarity. Proc. Amer. Math. Soc 113, 275–286 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. J.-P. Penot and C. Zălinescu, Bounded (Hausdorff) convergence : basic facts and applications, in Variational analysis and applications, F. Giannessi and A. Maugeri, eds., Kluwer Acad. Publ. Dordrecht, 2005.

  44. Rainwater J.: Spaces whose finest uniformity is metric, Pacific J. Math 9, 567–570 (1959)

    MathSciNet  MATH  Google Scholar 

  45. Rockafellar R.T., Wets R.: Variational analysis (2nd Edition). Springer Verlag, New York, NY (2004)

    Google Scholar 

  46. Vipera M.: Some results on sequentially compact extensions. Comment. Math. Univ. Carolinae 39, 819–831 (1998)

    MathSciNet  MATH  Google Scholar 

  47. Willard S.: General topology. Addison-Wesley, Reading (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Beer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, G., Costantini, C. & Lev, S. Bornological Convergence and Shields. Mediterr. J. Math. 10, 529–560 (2013). https://doi.org/10.1007/s00009-011-0162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-011-0162-4

Mathematics Subject Classification (2010)

Keywords

Navigation