Skip to main content
Log in

A Filippov’s Theorem, Some Existence Results and the Compactness of Solution Sets of Impulsive Fractional Order Differential Inclusions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we first present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form,

$$\begin{array}{lll} \quad \qquad D^{\alpha}_{*}y(t) & \in & F(t, y(t)), \quad\; {\rm a.e.}\ t\, \in \, J{\backslash} \{t_{1}, \ldots, t_{m}\}, \ \alpha\, \in \, (0,1], \\ y(t^{+}_{k}) - y(t^{-}_{k}) & = & I_{k}(y(t^{-}_{k})), \quad k = 1, \ldots, m, \\ \qquad \qquad y(0) & = & a,\end{array}$$

where J = [0, b], \({D^{\alpha}_{*}}\) denotes the Caputo fractional derivative and F is a set-valued map. The functions I k characterize the jump of the solutions at impulse points t k (\({k = 1, \ldots , m}\)). In addition, several existence results are established, under both convexity and nonconvexity conditions on the multivalued right-hand side. The proofs rely on a nonlinear alternative of Leray-Schauder type and on Covitz and Nadler’s fixed point theorem for multivalued contractions. The compactness of solution sets is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, M. Benchohra and J..J. Nieto and A. Ouahab, Fractional Differential Equations and Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, in press.

  2. Agarwal R.P., Benchohra M., Slimani B.A.: Existence results for differential equations with fractional order and impulses. Mem. Differential Equations Maths. Phys. 44, 1–21 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Agur Z., Cojocaru L., Mazaur G., Anderson R.M., Danon Y.L.: Pulse mass measles vaccination across age cohorts. Proc. Nat. Acad. Sci. USA. 90, 11698–11702 (1993)

    Article  Google Scholar 

  4. J. P. Aubin, Impulse Differential Inclusions and Hybrid Systems: A Viability Approach, Lecture Notes, Universit Paris-Dauphine, (2002).

  5. J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.

  6. Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  7. Bai Z., Lu H.: Positive solutions for boundary value problem of nonlinear fractional differential equations. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood, Chichister, 1989.

  9. M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Contemporay Mathematics and Its Applications, Hindawi, New York, 2006.

  10. Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Existence results for fractional functional differential inclusions with infinite delay and application to control theory. Fract. Calc. Appl. Anal. 11, 35–56 (2008)

    MathSciNet  MATH  Google Scholar 

  12. M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969.

  13. Caputo M.: Linear models of dissipation whose Q is almost frequency independent, Part II., Geophys. J. R. Astr. Soc. 13, 529–529 (1967)

    Article  Google Scholar 

  14. Caputo M., Mainardi F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II.) 1, 161–198 (1971)

    Article  Google Scholar 

  15. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 580 1977.

  16. Covitz H., Nadler S.B. Jr.: Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8, 5–11 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deimling K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York (1992)

    Book  MATH  Google Scholar 

  18. Diethelm K., Ford N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in “Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties” (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217–224, Springer-Verlag, Heidelberg, 1999.

  20. Diethelm K., Walz G.: Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16, 231–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. El-Sayed A.M.A., Ibrahim A.G.: Multivalued fractional differential equations. Appl. Math. Comput. 68, 15–25 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frankowska H.: A priori estimates for operational differential inclusions. J. Differential Equations 84, 100–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gaul L., Klein P., Kempfle S.: Damping description involving fractional operators. Mech. Systems Signal Processing 5, 81–88 (1991)

    Article  Google Scholar 

  24. Glockle W.G., Nonnenmacher T.F.: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)

    Article  Google Scholar 

  25. L.Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and Its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.

  26. Granas A., Dugundji J.: Fixed Point Theory. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

  27. A. Halanay and D. Wexler, Teoria calitativa a systeme cu impulduri, Editura Republicii Socialiste Romania, Bucharest, 1968.

  28. Henderson J., Ouahab A.: Fractional functional differential inclusions with finite delay. Nonlin. Anal. 70(5), 2091–2105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Henderson J., Ouahab A.: Impulsive differential inclusions with fractional order. Comput. Math. Appl. 59, 1191–1226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Henderson J., Ouahab A.: On the solutions sets for first order impulsive neutral functional differential inclusions in Banach spaces. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18, 53–114 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Henry D.: Geometric Theory of Semilinear Parabolic Partial differential Equations. Springer-Verlag, Berlin-New York (1989)

    Google Scholar 

  32. Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997.

  33. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V. Amsterdam, 2006.

  34. Kilbas A.A., Trujillo J.J.: Differential equations of fractional order: methods, results and problems II. Appl. Anal. 81, 435–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.

  36. Kruger-Thiemr E.: Formal theory of drug dosage regiments. I.. J. Theoret. Biol. 13, 212–235 (1966)

    Article  Google Scholar 

  37. Kruger-Thiemr E.: Formal theory of drug dosage regiments II.. J. Theoret. Biol. 23, 169–190 (1969)

    Article  Google Scholar 

  38. Lakshmikantham V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

  40. F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanis, in “Fractals and Fractional Calculus in Continuum Mechanics” (A. Carpinteri and F. Mainardi, Eds), pp, 291-348, Springer-Verlag, Wien, 1997.

  41. Metzler F., Schick W., Kilian H.G., Nonnenmacher T.F.: Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  42. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)

    MATH  Google Scholar 

  43. V. D. Milman and A. A. Myshkis, Randorn impulses in linear dynamical systems, in “Approximante Methods for Solving Differential Equations,” Publishing house of the Academy of Sciences of Ukainian SSR, Kiev, (1963), 64–81, in Russian.

  44. V. D. Milman and A. A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J. 1 (1960), 233–237, in Russian.

  45. Momani S.M., Hadid S.B.: Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24, 37–44 (2003)

    MathSciNet  MATH  Google Scholar 

  46. S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. (2004), 697–701.

  47. J. Musielak, Introduction to Functional Analysis, (in Polish). PWN, Warszawa 1976.

  48. Nakhushev A.M.: The Sturm-Liouville problems for a second order ordinary equations with fractional derivatives in the lower order. Dokl. Akad. Nauk SSSR 234, 308–311 (1977)

    MathSciNet  Google Scholar 

  49. Ouahab A.: Some results for fractional boundary value problem of differential inclusions. Nonlin. Anal. 69, 3877–3896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Ouahab, Filippov’s theorem for impulsive differential inclusions with fractional order, Electron. J. Qual. Theory Differ. Equ., Spec, Ed. I 2009, No. 23, 23 page.

  51. S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses, Lecture Notes in Mathematics, 954, Springer-Verlag, 1982.

  52. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  53. Podlubny I., Petraš I., Vinagre B.M., O’Leary P., Dorčak L.: Analogue realizations of fractional-order controllers. Fractional order calculus and its applications. Nonlinear Dynam. 29, 281–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  55. Samoilenko A.M., Perestyuk N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  56. A.A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer, Dordrecht, The Netherlands, 2000.

  57. Yu C., Gao G.: Existence of fractional differential equations. J. Math. Anal. Appl. 310, 26–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhu Q.J.: On the solution set of differential inclusions in Banach Space. J. Differential Equations 93(2), 213–237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Ouahab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, J., Ouahab, A. A Filippov’s Theorem, Some Existence Results and the Compactness of Solution Sets of Impulsive Fractional Order Differential Inclusions. Mediterr. J. Math. 9, 453–485 (2012). https://doi.org/10.1007/s00009-011-0141-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-011-0141-9

Mathematics Subject Classification (2010)

Keywords

Navigation