Mediterranean Journal of Mathematics

, Volume 9, Issue 2, pp 403–407 | Cite as

Some Supports of Fourier Transforms of Singular Measures are not Rajchman

  • Maria RoginskayaEmail author


The notion of Riesz sets tells us that a support of Fourier transform of a measure with non-trivial singular part has to be large. The notion of Rajchman sets tells us that if the Fourier transform tends to zero at infinity outside a small set, then it tends to zero even on the small set. Here we present a new angle of an old question: Whether every Rajchman set should be Riesz.

Mathematics Subject Classification (2010)

Primary 42A16 Secondary 43A05 


Rajchman sets Riesz sets Riesz products singular measures support of Fourier transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Host B., Parreau F.: Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à linfini. Colloq. Math. 41(2), 285–289 (1979)MathSciNetzbMATHGoogle Scholar
  2. 2.
    P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, 1995.Google Scholar
  3. 3.
    Pigno L.: Fourier-Stieltjes transforms which vanish at infinity off certain sets. Glasg. Math. J. 19, 49–56 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Rajchman A.: Une classe de series trigonometriques. Math. Ann. 101, 686–700 (1929)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    F. Riesz, M. Riesz, Über Rantwerte einer analytischen Funktionen. Quatrième Congrès des Math. Scand. Stockholm (1916), pp. 27–44Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Mathematical SciencesChalmers University of TechnologyGothenburgSweden
  2. 2.Mathematical SciencesGothenburg UniversityGothenburgSweden

Personalised recommendations