Skip to main content
Log in

Spectrum of One-Dimensional p-Laplacian with an Indefinite Integrable Weight

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Motivated by extremal problems of weighted Dirichlet or Neumann eigenvalues, we will establish two fundamental results on the dependence of weighted eigenvalues of the one-dimensional p-Laplacian on indefinite integrable weights. One is the continuous differentiability of eigenvalues in weights in the Lebesgue spaces L γ with the usual norms. Another is the continuity of eigenvalues in weights with respect to the weak topologies in L γ spaces. Here 1 ≤ γ ≤ ∞. In doing so, we will give a simpler explanation to the corresponding spectrum problems, with the help of several typical techniques in nonlinear analysis such as the Fréchet derivative and weak* convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anane A., Chakrone O., Monssa M. (2002) Spectrum of one dimensional p- Laplacian with indefinite weight. Electr. J. Qualitative Theory Differential Equations 2002(17): 11

    Google Scholar 

  2. Arias M., Campos J., Cuesta M., Gossez J.-P. (2008) An asymmetric Neumann problem with weights. Ann. Inst. H. Poincaré Anal. Non Linéarie 25: 267–280

    Article  MATH  MathSciNet  Google Scholar 

  3. Binding P.L., Dràbek P. (2003) Sturm-Liouville theory for the p-Laplacian. Stud. Sci. Math. Hungar. 40: 375–396

    MATH  Google Scholar 

  4. Binding P.L., Rynne B.P. (2007) The spectrum of the periodic p-Laplacian. J. Differential Equations 235: 199–218

    Article  MATH  MathSciNet  Google Scholar 

  5. Brown K.J., Lin S.S. (1980) On the existence of positive eigenvalue problem with indefinite weight function. J. Math. Anal. 75: 112–120

    Article  MATH  MathSciNet  Google Scholar 

  6. Cuesta M. (2001) Eigenvalue problems for the p-Laplacian with indefinite weights. Electr. J. Differential Equations 2001(33): 9

    MathSciNet  Google Scholar 

  7. Eberhard W., Elbert Á. (2000) On the eigenvalues of half-linear boundary value problems. Math. Nachr. 213: 57–76

    Article  MATH  MathSciNet  Google Scholar 

  8. Kajikiya R., Lee Y.-H., Sim I. (2008) One-dimensional p-Laplacian with a strong singular indefinite weight, I, Eigenvalues. J. Differential Equations 244: 1985–2019

    Article  MATH  MathSciNet  Google Scholar 

  9. Karaa S. (1998) Sharp estimates for the eigenvalues of some differential equations. SIAM J. Math. Anal. 29: 1279–1300

    Article  MATH  MathSciNet  Google Scholar 

  10. Kong Q., Zettl A. (1996) Eigenvalues of regular Sturm-Liouville problems. J. Differential Equations 131: 1–19

    Article  MATH  MathSciNet  Google Scholar 

  11. Krein M.G. (1955) On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. Amer. Math. Soc. Transl. Ser. 2(1): 163–187

    Google Scholar 

  12. Lou Y., Yanagida E. (2006) Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Japan J. Indust. Appl. Math. 23: 275–292

    Article  MATH  MathSciNet  Google Scholar 

  13. Megginson R.E. (1998) An Introduction to Banach Space Theory, Graduate Texts Math., Vol. 183. Springer-Verlag, New York

    Google Scholar 

  14. G. Meng and M. Zhang, Continuity in weak topology: first order linear systems of ODE, Preprint, 2008. http://faculty.math.tsinghua.edu.cn/~mzhang/

  15. Möller M., Zettl A. (1996) Differentiable dependence of eigenvalues of operators in Banach spaces. J. Operator Theory 36: 335–355

    MATH  MathSciNet  Google Scholar 

  16. Pöschel J., Trubowitz E. (1987) The Inverse Spectral Theory. Academic Press, New York

    Google Scholar 

  17. Senn S., Hess P. (1982) On positive solutions of a linear boundary value problem with Neumann boundary conditions. Math. Ann. 258: 459–470

    Article  MATH  MathSciNet  Google Scholar 

  18. Taira K. (2008) Degenerate elliptic eigenvalue problems with indefinite weights. Mediterr. J. Math., 5: 133–162

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Yan and M. Zhang, Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian, Trans. Amer. Math. Soc., in press.

  20. Zhang M. (2000) Nonuniform nonresonance of semilinear differential equations. J. Differential Equations 166: 33–50

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang M. (2001) The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials. J. London Math. Soc. (2) 64: 125–143

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang M. (2008) Continuity in weak topology: higher order linear systems of ODE. Sci. China Ser. A 51: 1036–1058

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Meng.

Additional information

The third author is supported by the National Basic Research Program of China (Grant no. 2006CB805903), the National Natural Science Foundation of China (Grant no. 10531010) and the 111 Project of China (2007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, G., Yan, P. & Zhang, M. Spectrum of One-Dimensional p-Laplacian with an Indefinite Integrable Weight. Mediterr. J. Math. 7, 225–248 (2010). https://doi.org/10.1007/s00009-010-0040-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-010-0040-5

Mathematics Subject Classification (2010)

Keywords

Navigation