A Sufficient Condition for Lipschitz Stability of Controlled Invariant Subspaces



Given a pair of matrices (A, B) we study the Lipschitz stability of its controlled invariant subspaces. A sufficient condition is derived from the geometry of the set formed by the quadruples (A, B, F, S) where S is an (A, B)-invariant subspace and F a corresponding feedback.

Mathematics Subject Classification (2000)

58K25 58D15 


(A, B)-invariant subspace Lipschitz stability Grassmann manifold 


  1. 1.
    I. Gohberg, P. Lancaster and L. Rodman, Invariant Subspaces of Matrices with Applications, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1986.Google Scholar
  2. 2.
    L. Rodman, Stable Invariant Subspaces Modulo a Subspace, Oper. Theory Adv. Appl. 19 (1986), Birkhäuser, Basel, 399–413.Google Scholar
  3. 3.
    Velasco F.E.: Stable Subspaces of Matrix Pairs. Linear Algebra Appl. 301(no.1-3), 15–49 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Compta A., Helmke U., Peña M., Puerta X.: Simultaneous Versal Deformations of Endomorphisms and Invariant Subspaces. Linear Algebra Appl. 413(no. 2-3), 303–318 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J-M. Gracia, F. Velasco, Lipschitz-Stability of Controlled Invariant Subspaces II, preprint.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations