A Sufficient Condition for Lipschitz Stability of Controlled Invariant Subspaces

Article

Abstract

Given a pair of matrices (A, B) we study the Lipschitz stability of its controlled invariant subspaces. A sufficient condition is derived from the geometry of the set formed by the quadruples (A, B, F, S) where S is an (A, B)-invariant subspace and F a corresponding feedback.

Mathematics Subject Classification (2000)

58K25 58D15 

Keywords

(A, B)-invariant subspace Lipschitz stability Grassmann manifold 

References

  1. 1.
    I. Gohberg, P. Lancaster and L. Rodman, Invariant Subspaces of Matrices with Applications, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1986.Google Scholar
  2. 2.
    L. Rodman, Stable Invariant Subspaces Modulo a Subspace, Oper. Theory Adv. Appl. 19 (1986), Birkhäuser, Basel, 399–413.Google Scholar
  3. 3.
    Velasco F.E.: Stable Subspaces of Matrix Pairs. Linear Algebra Appl. 301(no.1-3), 15–49 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Compta A., Helmke U., Peña M., Puerta X.: Simultaneous Versal Deformations of Endomorphisms and Invariant Subspaces. Linear Algebra Appl. 413(no. 2-3), 303–318 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J-M. Gracia, F. Velasco, Lipschitz-Stability of Controlled Invariant Subspaces II, preprint.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations