Skip to main content
Log in

The Fourier Transform Associated to the k-Hyperbolic Dirac Operator

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The polynomial null solutions of the k-hyperbolic Dirac operator are investigated by the \(\mathfrak {osp}(1|2)\) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k-hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aliev, I.A., Rubin, B.: Spherical harmonics associated to the Laplace–Bessel operator and generalized spherical convolutions. Anal. Appl. 01, 81–109 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Constales, D., Krausshar, R.S., Ryan, J.: K-hypermonogenic automorphic forms. J. Number Theory 126, 254–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. De Bie, H.: An alternative definition of the Hermite polynomials related to the Dunkl Laplacian. Symmetry Integr. Geom. 4(093), 1–11 (2008)

    MathSciNet  MATH  Google Scholar 

  4. De Bie, H.: Clifford algebras, Fourier transforms, and quantum mechanics. Math. Method Appl. Sci. 35, 2198–2228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions, a Function Theory for the Dirac Operator. Kluwer, Dordrecht (1992)

    Book  MATH  Google Scholar 

  6. Dodonov, V.: Variance uncertainty relations without covariances for three and four observables. Phys. Rev. A 97, 022105 (2018)

    Article  ADS  Google Scholar 

  7. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eriksson, S.L.: k-Hypermonogenic functions. Prog. Anal. 2, 337–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eriksson, S.L., Leutwiler, H.: Hypermonogenic functions. In: Ryan, J., Sprößig, W. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, vol. 2, pp. 287–302. Birkhäuser, Boston (2000)

    Chapter  Google Scholar 

  10. Eriksson, S.L., Leutwiler, H.: Hypermonogenic functions and their Cauchy-type theorems. In: Qian, T., Hempfling, T., McIntosh, A., Sommen, F. (eds.) Advances in Analysis and Geometry. Trends in Mathematics. Birkhäuser, Basel (2004)

    Google Scholar 

  11. Eriksson, S.L., Leutwiler, H.: An improved Cauchy formula for hypermonogenic functions. Adv. Appl. Clifford Algebras 19, 269–282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eriksson, S.L., Orelma, H.: A Hyperbolic Interpretation of Cauchy-Type Kernels in Hyperbolic Function Theory. Hypercomplex Analysis and Applications, pp. 43–59. Springer, Basel (2011)

    MATH  Google Scholar 

  13. Eriksson, S.L., Orelma, H.: A New Cauchy Type Integral Formula for Quaternionic \(k\)-Hypermonogenic Functions Modern Trends in Hypercomplex Analysis. Birkhäuser, Cham, pp 175–189 (2016)

  14. Ghazouani, S., Soltani, E.A., Fitouhi, A.: A unified class of integral transforms related to the Dunkl transform. J. Math. Anal. Appl. 449, 1797–1849 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hleili, K.: Continuous wavelet transform and uncertainty principle related to the Weinstein operator. Integr. Transf. Spec. Funct. 29, 252–268 (2017)

    Article  MathSciNet  Google Scholar 

  16. Huber, A.: On the uniqueness of generalized axially symmetric potentials. Ann. Math. 60, 351–358 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kraußhar, R.S., Ryan, J.: Some conformally flat spin manifolds, Dirac operators and automorphic forms. J. Math. Anal. Appl. 325, 359–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leutwiler, H.: Modified Clifford analysis. Complex Var. Theory Appl. 17, 153–171 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Leutwiler, H.: Modified quaternionic analysis in \(\mathbb{R} ^{3}\). Complex Var. Theory Appl. 20, 19–51 (1992)

    MATH  Google Scholar 

  20. Leutwiler, H.: Modified spherical harmonics. Adv. Appl. Clifford Algebras 27, 1479–1502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leutwiler, H.: An orthonormal system of modified spherical harmonics. Complex Anal. Oper. Theory 11, 1241–1251 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leutwiler, H.: Modified spherical harmonics in four dimensions. Adv. Appl. Clifford Algebras 28, 1–18 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leutwiler, H.: More on modified spherical harmonics. Adv. Appl. Clifford Algebras 29, 1–15 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Leutwiler, H.: Modified spherical harmonics in several dimensions. Adv. Appl. Clifford Algebras 29, 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Leutwiler, H.: Contributions to modified spherical harmonics in four dimensions. Complex Anal. Oper. Theory 14, 1–19 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leutwiler, H.: Further results on modified harmonic functions in three dimensions. Math. Method Appl. Sci. (2021). https://doi.org/10.1002/mma.7277

    Article  Google Scholar 

  27. McBride, A.C., Kerr, F.H.: On Namias’s fractional Fourier transforms. IMA J. Appl. Math. 39, 159–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muckenhoupte, B., Stein, E.M.: Classical expansions and their relation to conjugate harmonic functions. Tran. Am. Math. Soc. 118, 17–92 (1965)

    Article  MathSciNet  Google Scholar 

  29. Ørsted, B., Somberg, P., Souček, V.: The Howe duality for the Dunkl version of the Dirac operator. Adv. Appl. Clifford Algebras 19, 403–415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rösler, M.: Dunkl Operators: Theory and Applications. Orthogonal Polynomials and Special Functions, pp. 93–135. Berlin, Heidelberg (2003)

    Book  MATH  Google Scholar 

  31. Salem, N.B., Nasr, A.R.: Heisenberg-type inequalities for the Weinstein operator. Integr. Transf. Spec. Funct. 26, 700–718 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weinstein, A.: Discontinuous integrals and generalized potential theory. Trans. Am. Math. Soc. 63, 342–354 (1948)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

Funding

This work was supported by the Tianjin Municipal Commission of Education (no. 2021KJ180) and Tianjin Municipal Science and Technology Commission (no. 22JCQNJC00470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Lian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lian, P. The Fourier Transform Associated to the k-Hyperbolic Dirac Operator. Adv. Appl. Clifford Algebras 33, 26 (2023). https://doi.org/10.1007/s00006-023-01274-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-023-01274-y

Keywords

Mathematics Subject Classification

Navigation