Skip to main content
Log in

Clifford Algebra-Valued Segal–Bargmann Transform and Taylor Isomorphism

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Classical Segal–Bargmann theory studies three Hilbert space unitary isomorphisms that describe the wave-particle duality and the configuration space-phase space. In this work, we generalized these concepts to Clifford algebra-valued functions. We establish the unitary isomorphisms among the space of Clifford algebra-valued square-integrable functions on \(\mathbb {R}^n\) with respect to a Gaussian measure, the space of monogenic square-integrable functions on \(\mathbb {R}^{n+1}\) with respect to another Gaussian measure and the space of Clifford algebra-valued linear functionals on symmetric tensor elements of \(\mathbb {R}^n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This publication is supported by multiple datasets, which are available at locations cited in the reference section.

References

  1. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform part I. Commun. Pure Appl. Math. 14(3), 187–214 (1961)

    Article  Google Scholar 

  2. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Books, Ltd, Boston (1982)

    MATH  Google Scholar 

  3. Brackx, F., Schepper, N De., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–201 (2009)

    Article  Google Scholar 

  4. Dang, P., Mourão, J., Nunes, J.P., Qian, T.: Clifford coherent state transforms on spheres. J. Geom. Phys. 124, 225–232 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Delanghe, R., Sommen, F., Soucek, V.: Clifford Algebra and Spinor Valued Functions: A Function Theory for the Dirac Operator. Springer, Dordrecht (1992)

    Book  Google Scholar 

  6. Doman, B.G.S.: The Classical Orthogonal Polynomials. World Scientific, Singapore (2016)

    MATH  Google Scholar 

  7. Driver, B.K.: On the Kakutani–Itô-Segal–Gross and Segal–Bargmann–Hall isomorphisms. J. Funct. Anal. 133(1), 69–128 (1995)

    Article  MathSciNet  Google Scholar 

  8. Gross, L., Malliavin, P.: Hall’s transform and the Segal–Bargmann map. In: Ikeda, N., Watanabe, S., Fukushima, M., Kunita, H. (eds.) Itô’s Stochastic Calculus and Probability Theory, pp. 73–116. Springer, Tokyo (1996)

    Chapter  Google Scholar 

  9. Hall, B.: The Segal–Bargmann “coherent-state’’ transform for Lie groups. J. Funct. Anal. 122, 103–151 (1994)

    Article  MathSciNet  Google Scholar 

  10. Hall, B.: Holomorphic methods in analysis and mathematical physics. Contemp. Math. 260, 1–59 (2000)

  11. Itô, K.: Multiple Wiener integral. J. Math. Soc. Jpn. 3, 157–169 (1951)

    Article  MathSciNet  Google Scholar 

  12. Kakutani, S.: Determination of the spectrum of the flow of Brownian motion. Proc. Natl. Acad. Sci. U.S.A. 36, 319–323 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kirwin, W.D., Mourão, J., Nunes, J.P., Qian, T.: Extending coherent state transforms to Clifford analysis. J. Math. Phys. 57(10), 103505 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lawson, H.B., Marie-Louise, M.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  15. Mourão, J., Nunes, J.P., Qian, T.: Coherent state transforms and the Weyl equation in Clifford analysis. J. Math. Phys. 58(1), 013503 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Segal, I.E.: Tensor algebras over Hilbert spaces. Trans. Am. Math. 81, 106–134 (1956)

    Article  MathSciNet  Google Scholar 

  17. Segal, I.E.: Mathematical characterization of the physical vacuum for a linear Bose–Einstein field. Ill. J. Math. 6(3), 500–523 (1962)

    MATH  Google Scholar 

  18. Segal, I.E.: The complex-wave representation of the free Boson field. In: Gohberg, I., Kac, M. (eds.) Topics in Functional Analysis: Essays Dedicated to M. G. Krein on the Occasion of his 70th Birthday, Advances in Mathematics Supplementary Studies, vol. 3, pp. 321–343. Academic Press, New York (1978)

    Google Scholar 

  19. Sommen, F.: Some connections between Clifford analysis and complex analysis. Complex Var. Elliptic Equ. 1, 97–118 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Brian Hall for his valuable suggestions and also to the anonymous reviewers for helpful comments. This work was partially supported by the Development and Promotion of Science and Technology Talents Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wicharn Lewkeeratiyutkul.

Additional information

Communicated by Hendrik De Bie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eaknipitsari, S., Lewkeeratiyutkul, W. Clifford Algebra-Valued Segal–Bargmann Transform and Taylor Isomorphism. Adv. Appl. Clifford Algebras 31, 68 (2021). https://doi.org/10.1007/s00006-021-01171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01171-2

Keywords

Mathematics Subject Classification

Navigation