Skip to main content
Log in

Energy–Momentum Complex in General Relativity and Gauge Theory

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Alternative versions of the energy–momentum complex in general relativity are given compact new formulations with spacetime algebra. A new unitary form for Einstein’s equation greatly simplifies the derivation and analysis of gravitational superpotentials. Interpretation of Einstein’s equations as a gauge field theory on flat spacetime is shown to resolve ambiguities in energy–momentum conservation laws and reveal intriguing new relations between superpotential, gauge connection and spin angular momentum with rich new possibilities for physical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babak, S., Grishchuk, L.: Energy–momentum tensor for the gravitational field. Phys. Rev. D 61, 1–18 (1999)

    Article  MathSciNet  Google Scholar 

  2. The early history of conservation laws in GR is surveyed by Cattani, C., DeMaria, M.: Conservation laws and gravitational waves in general relativity. In: Earman, J., Janssen, M., Norton, J. (eds.) The Attraction of Gravitation: New Studies in the History of General Relativity. Birkhäuser, Boston (1993)

  3. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  4. Doran, C., Lasenby, A.: Integral Equations, Kerr–Schild Fields and Gravitational Sources (2004). arXiv:gr-qc/0404081 v1

  5. Einstein, A.: Hamilton’s Principle and the General Theory of Relativity. Sitzungsber.D. Preuss. Akad. D. Wiss, 1916. English translation in The Principle of Relativity (Dover, 1923)

  6. Feynman, R.: Feynman Lectures on Gravitation. Addison-Wesley, Reading (1995)

    Google Scholar 

  7. Freud, Ph: On the expression of the total energy and the total momentum of a material system in the theory of general relativity. Ann. Math. Princet. 40, 417–419 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  8. Goldberg, J.: Invariant transformations, conservation laws, and energy–momentum. In: Held, A. (ed.) General Relativity and Gravitation, vol. I, pp. 469–489. Plenum, New York (1980)

    Google Scholar 

  9. Gupta, S.: Einstein’s and other theories of gravitation. Rev. Mod. Phys. 29, 334–336 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hestenes, D.: Gauge theory gravity with geometric calculus. Found. Phys. 36, 903–970 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hestenes, D.: Space-Time Algebra. Gordon & Breach, New York (1966)

    MATH  Google Scholar 

  12. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus, a Unified Language for Mathematics and Physics. Kluwer Academic, Dordrecht (1986)

    MATH  Google Scholar 

  13. Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71, 691–704 (2003)

    Article  ADS  Google Scholar 

  14. Hestenes, D.: Differential forms in geometric calculus. In: Brackx, F., Delanghe, R., Serras, H. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, pp. 269–285. Kluwer Academic, Dordrecht (1993)

    Chapter  Google Scholar 

  15. Israelit, M.: A gauge-covariant bimetric tetrad theory of gravitation and electromagnetism. Found. Phys. 19, 33–55 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. Landau, L., Lifshitz, E.: The Classical Theory of Fields. Addison-Wesley, Reading (1971)

    MATH  Google Scholar 

  17. Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebra. Philos. Trans. R. Lond. A 356, 487–582 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. Misner, C., Thorne, K., Wheeler, J.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  19. Møller, C.: Momentum and energy in general relativity and gravitational radiation. Mat. Fys. Medd. Dan. Vid. Selsk. 34(3), 1–67 (1964). This completes a long analysis in several articles beginning in 1958. The analysis is summarized

  20. Møller, C.: Survey of investigations on the energy–momentum complex in general relativity. Mat. Fys. Medd. Dan. Vid. Selsk 35(3), 1–14 (1966)

    Google Scholar 

  21. Møller, C.: The four-momentum of an insular system in general relativity. Nucl. Phys. 57, 330–338 (1964)

    Article  Google Scholar 

  22. Much more literature on extensions and applications of Geometric Algebra and Calculus can be accessed from the websites http://geocalc.clas.asu.edu/ and http://www.mrao.cam.ac.uk/~clifford/

  23. Rosen, N.: A theory of gravitation. Ann. Phys. 84, 455–473 (1974). This is representative of many papers by Rosen

  24. Thirring, W.: An alternative approach to the theory of gravitation. Ann. Phys. 16, 96–117 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  25. Weyl, H.: Elektron and gravitation I. Zeitschrift für Physik 56, 330 (1929)

    Article  ADS  Google Scholar 

  26. Winnicour, J.: Angular momentum in general relativity. In: Held, A. (ed.) General Relativity and Gravitation, vol. II, pp. 71–95. Plenum, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hestenes.

Additional information

Communicated by Eckhard Hitzer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hestenes, D. Energy–Momentum Complex in General Relativity and Gauge Theory. Adv. Appl. Clifford Algebras 31, 51 (2021). https://doi.org/10.1007/s00006-021-01154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01154-3

Keywords

Mathematics Subject Classification

Navigation