Skip to main content
Log in

The Penrose Transform and the Exactness of the Tangential \(\pmb {k}\)-Cauchy–Fueter Complex on the Heisenberg Group

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The k-Cauchy–Fueter complex in quaternionic analysis was generalized to the Heisenberg group in a previous paper (Ren et al., in Adv Appl Clifford Algebras 30(2): Paper No. 20, 2020). But it is not known whether this differential complex is exact or not. In this paper, we apply the Penrose transform (the twistor method) to a double fibration of homogeneous spaces of \(\mathrm{SO}(2N,{\mathbb {C}})\) to prove its exactness on the Heisenberg group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baston, R., Eastwood, M.: The Penrose Transform. Its Interaction with Representation Theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1989)

    MATH  Google Scholar 

  2. Baston, R.: Quaternionic complexes. J. Geom. Phys. 8, 29–52 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bureš, J., Damiano, A., Sabadini, I.: Explicit resolutions for the complex of several Fueter operators. J. Geom. Phys. 57(3), 765–775 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Čap, A., Slovák, J.:Parabolic Geometries. I. Background and General Theory. Mathematical Surveys and Monographs, vol. 154, pp. x+628. American Mathematical Society, Providence (2009)

  5. Čap, A., Salač, T.: Parabolic conformally symplectic structures I; definition and distinguished connections. Forum Math. 30, 733–751 (2018)

    Article  MathSciNet  Google Scholar 

  6. Čap, A., Salač, T.: Parabolic conformally symplectic structures II; parabolic contactification. Ann. Mat. Pura Appl. 197, 1175–1199 (2018)

    Article  MathSciNet  Google Scholar 

  7. Colombo, F., Souček, V., Struppa, D.: Invariant resolutions for several Fueter operators. J. Geom. Phys. 56(7), 1175–1191 (2006)

  8. Damiano, A., Sabadini, I., Souček, V.: Different approaches to the complex of three Dirac operators. Ann. Glob. Anal. Geom. 46(3), 313–334 (2014)

    Article  MathSciNet  Google Scholar 

  9. Eastwood, M., Penrose, R., Wells, R.: Cohomology and massless fields. Commun. Math. Phys. 78(3), 305–351 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fulton, W., Harris, J.: Representation Theory, A First Course, Graduate Texts in Mathematics, vol. 129. Springer, New York (1991)

    MATH  Google Scholar 

  11. Helgason, S.: Differential Geometry, Lie groups, and Symmetric Spaces. Corrected reprint of the 1978 original. Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence (2001)

  12. Humphreys, J.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)

    Book  Google Scholar 

  13. Krump, L., Souček, V.: The generalized Dolbeault complex in two Clifford variables. Adv. Appl. Clifford Algebras 17(3), 537–548 (2007)

    Article  MathSciNet  Google Scholar 

  14. Krump, L.: A resolution for the Dirac operator in four variables in dimension 6. Adv. Appl. Clifford Algebras 19, 365–374 (2009)

    Article  MathSciNet  Google Scholar 

  15. Pandžić, P., Souček, V.: BGG complexes in singular infinitesimal character for type \(A\). J. Math. Phys. 58, 111512 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ren, G-Z., Shi, Y., Wang, W.: The tangential \(k\)-Cauchy–Fueter operator and \(k\)-CF functions over the Heisenberg group. Adv. Appl. Clifford Algebras 30(2), Paper No. 20 (2020)

  17. Salač, T.: Resolution of \(k\) Dirac operators. Adv. Appl. Clifford Algebras 28(1), Paper No. 3 (2018)

  18. Salač, T.: \(k\)-Dirac complexes. SIGMA 14, Paper No. 012 (2018)

  19. Shi, Y., Wang, W.: The tangential \(k\)-Cauchy–Fueter complexes and Hartogs’ phenomenon over the right quaternionic Heisenberg group. Ann. Mat. Pura Appl. 1992, 651–680 (2020)

    Article  MathSciNet  Google Scholar 

  20. Wan, D.-R., Wang, W.: On the quaternionic Monge–Ampère operator, closed positive currents and Lelong–Jensen type formula on the quaternionic space. Bull. Sci. Math. 141(4), 267–311 (2017)

    Article  MathSciNet  Google Scholar 

  21. Wang, W.: The \(k\)-Cauchy–Fueter complexes, Penrose transformation and Hartogs’ phenomenon for quaternionic \(k\)-regular functions. J. Geom. Phys. 60, 513–530 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang, W.: The tangential Cauchy–Fueter complex on the quaternionic Heisenberg group. J. Geom. Phys. 61, 363–380 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wang, W.: The quaternionic Monge–Ampère operator and plurisubharmonic functions on the Heisenberg group. Math. Z. (2020). https://doi.org/10.1007/s00209-020-02608-3

  24. Ward, R.S., Wells, R.: Twistor Geometry and Field Theory. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings ICCA 12, Hefei, 2020, edited by Guangbin Ren, Uwe Kähler, Rafał Abłamowicz, Fabrizio Colombo, Pierre Dechant, G. Stacey Staples, Wei Wang.

Y. Shi is partially supported by National Nature Science Foundation in China (Nos. 11801508, 11971425); Q. Wu is partially supported by National Nature Science Foundation in China (No. 12071197), the Natural Science Foundation of Shandong Province (Nos. ZR2019YQ04, 2020KJI002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wu, Q. The Penrose Transform and the Exactness of the Tangential \(\pmb {k}\)-Cauchy–Fueter Complex on the Heisenberg Group. Adv. Appl. Clifford Algebras 31, 33 (2021). https://doi.org/10.1007/s00006-021-01129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01129-4

Keywords

Mathematics Subject Classification

Navigation