Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Zampetti, P.: Hyperbolic numbers, chapter 2. In: Geometry of Minkowski Space-Time, Springer Briefs in Physics. Springer, Berlin (2011)
de Leo, S., Rodrigues Jr., W.A.: Quaternionic electron theory: geometry, algebra, and Dirac’s spinors. Int. J. Theor. Phys. 37(6), 1707–1720 (1998)
MathSciNet
Article
MATH
Google Scholar
Dorst, L., Valkenburg, R.: Square root and logarithm of rotors in 3D conformal geometric algebra using polar decomposition, chapter 5. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice, pp. 81–104. Springer, London (2011)
Chapter
MATH
Google Scholar
Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins studies in the Mathematical Sciences, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)
Hamilton, W.R.: On a new species of imaginary quantities connected with the theory of quaternions. Proc. R. Irish Acad. 2, 424–434 (1844)
Google Scholar
Hamilton, W.R.: On a new species of imaginary quantities connected with the theory of quaternions, chapter 5. In: Halberstam, H., Ingram, R.E. (eds.) The Mathematical Papers of Sir William Rowan Hamilton, vol. III Algebra, pp. 111–116. Cambridge University Press, Cambridge (1967). First published as [5]
Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. Dover, Mineola (2000). Unabridged republication of McGraw-Hill edition, 1968
MATH
Google Scholar
Porteous, I.R.: Topological Geometry, second edn. Cambridge University Press, Cambridge (1981)
Book
MATH
Google Scholar
Sangwine, S.J.: Biquaternion (complexified quaternion) roots of $-1$. Adv. Appl. Clifford Algebras 16(1), 63–68 (2006)
MathSciNet
Article
MATH
Google Scholar
Sangwine, S.J., Alfsmann, D.: Determination of the biquaternion divisors of zero, including the idempotents and nilpotents. Adv. Appl. Clifford Algebras 20(2), 401–410 (2010). Published online 9 January 2010
MathSciNet
Article
MATH
Google Scholar
Sangwine, S.J., Le Bihan, N.: Quaternion Toolbox for Matlab®, version 2 with support for octonions. [Online], 2013. Software library. http://qtfm.sourceforge.net/
Sangwine, S.J., Ell, T.A., Le Bihan, N.: Fundamental representations and algebraic properties of biquaternions or complexified quaternions. Adv. Appl. Clifford Algebras 21(3), 607–636 (2011)
MathSciNet
Article
MATH
Google Scholar
Ward, J.P.: Quaternions and Cayley Numbers: Algebra and Applications, Mathematics and Its Applications, vol. 403. Kluwer, Dordrecht (1997)
Book
MATH
Google Scholar
Zhang, F.Z.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
MathSciNet
Article
MATH
Google Scholar