Skip to main content

The Riemann Curvature Tensor and Higgs Scalar Field within CAM Theory

Abstract

The composition algebra based methodology (CAM) (Wolk in Pap Phys 9:090002, 2017, Phys Scr 94:025301, 2019, Adv Appl Clifford Algebras 27(4):3225, 2017, J Appl Math Phys 6:1537, 2018, Phys Scr 94:105301, 2019) has previously been shown to generate the pre-Higgs Standard Model Lagrangian. In this paper the symmetry of general covariance is incorporated into CAM. The Riemann curvature tensor thereby arises, from which gravity-field Lagrangians are constructed. A Higgs-like scalar field coupled to the spacetime metric tensor also manifests.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    The Cayley–Dickson composition algebras \(\left\{ \mathbb {K},{{{\mathbb {K}}}^{\prime }}\right\} \), with the Hurwitz algebras \(\mathbb {K}=\left\{ \mathbb {R},\mathbb {C},{{\mathbb {H}}},\mathbb {O}\right\} \) and \({{\mathbb {K}}}^{\prime }\) being the unique split versions of \(\mathbb {K}\) [14]. The only Cayley–Dickson algebras which are composition algebras (algebras \(\mathbb {A}\) such that for any two elements the norm of their product equals the product of their norms [30, 45]: \(\left\| xy\right\| =\left\| x\right\| \left\| y\right\| \;\forall x,y\in \mathbb {A}\)) reside in 1, 2, 4 and 8 dimensions, corresponding to \(\mathbb {K}=\left\{ \mathbb {R},\mathbb {C},\mathbb {H},\mathbb {O}\right\} \) [30, 45] and their split versions \(\mathbb {K}^{\prime }=\left\{ \mathbb {C}^{\prime },\mathbb {H}^{\prime },\mathbb {O}^{\prime }\right\} \) [12, 48]. Only the \(\mathbb {K}\) algebras are division algebras (composition algebras without zero divisors) [12, 48]. However, since the non-division, composition algebra \(\mathbb {O}^{\prime }\) was also needed along with the \(\mathbb {K}\) algebras in developing \(SU(3)_{c}\) the term CAM is the appropriate designation for the formalism in general.

  2. 2.

    Ref. [59], pp. 91–92.

  3. 3.

    Also termed the Riemann curvature operator \(\mathscr {R}_{\mu \nu }\) with Levi-Civita connection: \(\left( \mathscr {R}_{\mu \nu },\nabla ^{\varvec{g}}\right) \rightarrow \left[ \nabla _{\mu },\nabla _{\nu }\right] \) (Ref. [34], Eq. (10.2)).

  4. 4.

    For example, See Ref. [66], Sec. 2.2 regarding SU(2) force field operators.

  5. 5.

    See Ref. [64] and citations therein on \(\mathcal {Z}\).

  6. 6.

    Ref. [59], Eq. (6.6.1).

  7. 7.

    A consideration separate from our knowledge of the necessary form of the Lagrangian shows that use of \(g^{\nu \omega }\) in Eq. (23) is correct. In the U(1) formalism the electromagnetic potential field \(A_{\mu }\) was involved in the analogous operator equation [63]. Since the tensor \(g_{\mu \nu }\) is the gravitational potential field in analogy with \(A_{\mu }\) [6, 24, 39, 50, 59], we may have conjectured that \(g_{\mu \nu }\) would be the entity involved in the operation, just as \(A_{\mu }\) was for U(1).

  8. 8.

    See, e.g., Ref. [59], Sec. 7.1 & 12.1–12.4; Ref. [6], Ch. X & XII.

  9. 9.

    At this stage in the development of SU(2) we had \(G_{\mu \nu }\) and had \(H_{\mu \nu }\) and \(F_{\mu \nu }\) for the respective U(1) and SU(3) gauge groups [63, 64, 66], thereafter constructing the force field Lagrangians with Eq. (31).

  10. 10.

    Ref. [34], Sec. 11.2.

References

  1. 1.

    Ablamowicz, R., Sobczyk, G.: Lectures on Clifford (Geometric) Algebras and Applications. Birkhauser, Boston (2004)

    MATH  Google Scholar 

  2. 2.

    Baez, J.: The octonions. Bull. Am. Math Soc. 39(2), 145 (2002)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Baez, J., Huerta, J.: The strangest numbers in string theory. Sci. Am. 304, 60 (2011)

    ADS  Google Scholar 

  4. 4.

    Baez, J., Muniain, J.P.: Gauge Fields, Knots and Gravity. World Scientific Publishing Co. Pte. Ltd., Hackensack (2013)

    MATH  Google Scholar 

  5. 5.

    Belishev, M.I., Vakulenko, A.F.: On algebras of harmonic quaternion fields in \(\mathbb{R}^{3}\). arXiv:1710.00577v3 [math.FA] (2017)

  6. 6.

    Bergmann, P.G.: Introduction to the Theory of Relativity. Dover Publications Inc, New York (1976)

    Google Scholar 

  7. 7.

    Bisht, P.S.: Split octonion electrodynamics and unified fields of dyons. In: 4th Conference on Nuclear and Particle Physics (2003)

  8. 8.

    Brown, R., Hopkins, N.: Noncommutative matrix Jordan algebras. Trans. Am. Math. Soc. 333(1), 137 (1992)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Castro, C.: On the noncommutative and nonassociative geometry of octonionic spacetime, modified dispersion relations and grand unification. J. Math. Phys. 48, 073517 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  10. 10.

    Collins, P.D.B., Martin, A.D., Squires, E.J.: Particle Physics and Cosmology. Wiley, New York (1989)

    Google Scholar 

  11. 11.

    Conway, J.H., Smith, D.A.: On Quaternions and Octonions. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  12. 12.

    Conway, J.H., Smith, D.A.: On Quaternions and Octonions: their Geometry, Arithmetic and Symmetry. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  13. 13.

    Daboul, J., Dabourgo, L.: Matrix representation of octonions and generalizations. J. Math. Phys. 40, 4134 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  14. 14.

    Dray, T., Manogue, C.A.: The Geometry of the Octonions. World Scientific Publishing Co., Ptc. Ltd., New Jersey (2015)

    MATH  Google Scholar 

  15. 15.

    D’Inverno, R.: Introducing Einstein’s Relativity. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  16. 16.

    Einstein, A.: The foundation of general relativity. Annalen der Physik 49, 769–822 (1916)

    ADS  Google Scholar 

  17. 17.

    Einstein, A.: Relativity: The Special and General Theory. Methuen & Co., Ltd, London (1916)

    MATH  Google Scholar 

  18. 18.

    Einstein, A.: Physics and reality. J. Frankl. Inst. 221, 349–382 (1936)

    ADS  Google Scholar 

  19. 19.

    Einstein, A.: Autobiographical notes, reprinted in S Hawking. In: A Stubbornly Persistent Illusion, The Essential Scientific Works of Albert Einstein. Running Press Book Publishers, Philadelphia (2007)

  20. 20.

    Einstein, A.: Jahrb. Radioakt. 4, 411 (1907)

  21. 21.

    Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  22. 22.

    Ferraris, M., et al.: Do nonlinear metric theories of gravitation really exist? Class. Quantum Gravity 5, L95 (1988)

    MathSciNet  Google Scholar 

  23. 23.

    Folomeshkin, V.N.: The quadratic Lagrangians in general relativity. Commun. Math. Phys. 22, 115 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  24. 24.

    Frankel, T.: Gravitational Curvature, An Introduction to Einstein’s Theory. W.H. Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  25. 25.

    Girard, P.R.: The quaternion group and modern physics. Eur. J. Phys. 5, 25 (1984)

    Google Scholar 

  26. 26.

    Griffiths, D.: Introduction to Elementary Particles, 2nd edn. Wiley-VCH, Weinheim (2008)

    MATH  Google Scholar 

  27. 27.

    Hay, G.E.: Vector & Tensor Analysis. Dover Publications, Inc., New York (1953)

    MATH  Google Scholar 

  28. 28.

    Hooft, G.T.: Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B 33, 167–188 (1971)

    Google Scholar 

  29. 29.

    Hovis, R.C., Kragh, H.: PAM Dirac and the beauty of physics. Sci. Am. 268(5), 104 (1993)

    ADS  Google Scholar 

  30. 30.

    Hurwitz, A.: Nachr. Ges. Wiss. Göttingen 309 (1898)

  31. 31.

    Kane, G.: String Theory and the Real World. Morgan & Claypool Publishers, San Rafeal (2017)

    MATH  Google Scholar 

  32. 32.

    Krishnaswami, G.S., Sachdev, S.: Algebra and geometry of Hamilton’s quaternions. Resonance J. Sci. Educ. 21(6), 529 (2016)

    Google Scholar 

  33. 33.

    Lounesto, P.: Octonions and triality. Adv. Appl. Clifford Algebras 11(2), 191 (2001)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Maia, M.D.: Geometry of the Fundamental Interactions. Springer Science+Business Media, LLC, New York (2011)

    MATH  Google Scholar 

  35. 35.

    Maiani, L.: Electroweak Interactions. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  36. 36.

    Mukhanov, V.F., Winitzki, S.: Introduction to Quantum Effects in Gravity. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  37. 37.

    Nissani, N.: Quadratic Lagrangian for general relativity theory. Phys. Rev. D 31, 1489 (1985)

    ADS  MathSciNet  Google Scholar 

  38. 38.

    Okubo, S.: Introduction to Octonion and Other Non-associative Algebras in Physics, Montroll Memorial Lecture Series in Mathematical Physics 2. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  39. 39.

    Pauli, W.: Theory of Relativity. Dover Publications Inc., New York (1958)

    MATH  Google Scholar 

  40. 40.

    Peebles, P.J.E.: Quantum Mechanics. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  41. 41.

    Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2d edn. Princeton University Press, Princeton (2013)

    MATH  Google Scholar 

  42. 42.

    Quigg, C.: Unanswered questions in electroweak theory. arXiv:0905.3187v2, Theoretical Physics Dept., Fermi National Accelerator Laboratory, Batavia (2009)

  43. 43.

    Quigg, C.: Electroweak symmetry in historical perspective. arXiv:1503.01756v3, Theoretical Physics Dept., Fermi National Accelerator Laboratory, Batavia (2015)

  44. 44.

    Quigg, C.: Spontaneous symmetry breaking as a basis for particle mass. arXiv:0704.2232v2, Theoretical Physics Dept., Fermi National Accelerator Laboratory, Batavia (2007)

    ADS  Google Scholar 

  45. 45.

    Ramond, P.: Group Theory—A Physicist’s Survey. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  46. 46.

    Robinson, M.: Symmetry and the Standard Model. Springer Science+Business Media, LLC, New York (2011)

    MATH  Google Scholar 

  47. 47.

    Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics, Part II. Springer Science+Business Media, Dordrecht (2017)

    MATH  Google Scholar 

  48. 48.

    Schafer, R.D.: On the algebras formed by the Cayley–Dickson process. Am. J. Math. 76, 435 (1954)

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Schafer, R.D.: An Introduction to Non-associative Algebras. Dover Publications, New York (1995)

    Google Scholar 

  50. 50.

    Scharf, G.: Gauge Field Theories: Spin One and Spin Two. Dover Publications Inc, New York (2016)

    Google Scholar 

  51. 51.

    Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  52. 52.

    Schwichtenberg, J.: Physics from Symmetry. Springer International Publishing, Cham (2015)

    MATH  Google Scholar 

  53. 53.

    Springer, T.A., Veldkamp, F.D.: Octonions, Jordan Algebras and Exceptional Groups. Springer, Berlin (2000)

    MATH  Google Scholar 

  54. 54.

    Stephenson, G.: Quadratic Lagrangians and general relativity. Nuovo Cim. 9, 263 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  55. 55.

    Suh, T.: Algebras formed by the Zorn vector matrix. Pac. J. Math. 30(1), 255–258 (1969)

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Tanabashi, M. et al. (Particle Data Group): Review of particle physics: status of Higgs boson physics. Phys. Rev. D 98, 030001 (2018)

  57. 57.

    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  58. 58.

    Walecka, J.D.: Introduction to General Relativity. World Scientific Publishing Co., Hackensack (2007)

    MATH  Google Scholar 

  59. 59.

    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  60. 60.

    Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  61. 61.

    Wigner, E.P.: Symmetries and Reflections. Indiana University Press, Bloomington (1967)

    Google Scholar 

  62. 62.

    Witten, E.: Reflections on the fate of spacetime. Phys. Today 49(4), 24 (1996)

    MathSciNet  Google Scholar 

  63. 63.

    Wolk, B.: An alternative derivation of the Dirac operator generating intrinsic Lagrangian local gauge invariance. Pap. Phys. 9, 090002 (2017)

    Google Scholar 

  64. 64.

    Wolk, B.: On an intrinsically local gauge symmetric SU(3) field theory for quantum chromodynamics. Adv. Appl. Clifford Algebras 27(4), 3225 (2017)

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Wolk, B.: Addendum to on an intrinsically local gauge symmetric SU(3) field theory for quantum chromodynamics. J. Appl. Math. Phys. 6, 1537 (2018)

    Google Scholar 

  66. 66.

    Wolk, B.: An alternative formalism for generating pre-Higgs SU(2) x U(1) electroweak unification that intrinsically accommodates SU(2) left-chiral asymmetry. Phys. Scr. 94, 025301 (2019)

    ADS  Google Scholar 

  67. 67.

    Wolk, B.: The division algebraic constraint on gauge mediated proton decay. Phys. Scr. 94, 105301 (2019)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brian Jonathan Wolk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Vladislav Kravchenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolk, B.J. The Riemann Curvature Tensor and Higgs Scalar Field within CAM Theory. Adv. Appl. Clifford Algebras 30, 4 (2020). https://doi.org/10.1007/s00006-019-1033-5

Download citation

Keywords

  • Gravity
  • Principle of general covariance
  • Principle of equivalence
  • General Relativity
  • Standard Model
  • Higgs field
  • Division algebras