Skip to main content
Log in

Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper, we study the fundamental solution of natural powers of the n-parameter fractional Laplace and Dirac operators defined via Riemann–Liouville fractional derivatives. To do this we use iteration through the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace \(\Delta _{a^+}^\alpha \) and Dirac \(D_{a^+}^\alpha \) operators, admitting a summable fractional derivative. The family of fundamental solutions of the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form using the Mittag–Leffler function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo, N., Jarohs, S., Saldaña, A.: On the loss of maximum principles for higher-order fractional Laplacians. Proc. Am. Math. Soc. 146(11), 4823–4835 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Oxford Mathematical Monographs. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  3. Delanghe, R., Sommen, F.: Clifford Algebras and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Mathematics and Its Applications, vol. 53. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  4. Ditkin, V.A., Prudnikov, A.P.: Integral Transforms and Operational Calculus, International Series of Monographs in Pure and Applied Mathematics, vol. 78. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  5. Ferreira, M., Vieira, N.: Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann–Liouville case. Complex Anal. Oper. Theory 10(5), 1081–1100 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ferreira, M., Vieira, N.: Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives. Complex Var. Elliptic Equ. 62(9), 1237–1253 (2017)

    Article  MathSciNet  Google Scholar 

  7. Ferreira, M., Kraußhar, R., Rodrigues, M.M., Vieira, N.: A higher dimensional fractional Borel–Pompeiu formula and a related hypercomplex fractional operator calculus. Math. Methods Appl. Sci 42(10), 3633–3653 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag–Leffler Functions. Theory and Applications, Springer Monographs in Mathematics. Springer, Berlin (2014)

    MATH  Google Scholar 

  9. Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice. Wiley, Chichester (1997)

    MATH  Google Scholar 

  10. Kähler, U., Vieira, N.: Fractional Clifford analysis. In: Bernstein, S., Kähler, U., Sabadini, I., Sommen, F. (eds.) Hypercomplex Analysis: New Perspectives and Applications. Trends in Mathematics, pp. 191–201. Basel, Birkähuser (2014)

    MATH  Google Scholar 

  11. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  12. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  13. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  14. Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discret. Contin. Dyn. Syst. Ser. S7 4, 857–885 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Vieira, N.: Fischer decomposition and Cauchy–Kovalevskaya extension in fractional Clifford analysis: the Riemann–Liouville case. Proc. Edinb. Math. Soc. II. Ser. 60(1), 251–272 (2017)

    Article  MathSciNet  Google Scholar 

  16. Zemanian, A.H.: Generalized Integral Transformations, Pure Applied Mathematics, vol. 18. Interscience Publishers (division of Wiley), New York (1968)

    Google Scholar 

Download references

Acknowledgements

A. Di Teodoro was supported by Colegio de Ciencias e Ingenierías de la Universidad San Francisco de Quito. The work of M. Ferreira and N. Vieira was supported by Portuguese funds through CIDMA-Center for Research and Development in Mathematics and Applications, and FCT–Fundação para a Ciência e a Tecnologia, within project UID/MAT/04106/2019. N. Vieira was also supported by FCT via the FCT Researcher Program 2014 (Ref: IF/00271/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vieira.

Additional information

Dedicated to Professor Sirkka-Liisa Eriksson on occasion of her 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on FTHD 2018, edited by Sirkka-Liisa Eriksson, Yuri M. Grigoriev, Ville Turunen, Franciscus Sommen and Helmut Malonek. Provided Funding information has to be tagged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teodoro, A.D., Ferreira, M. & Vieira, N. Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense. Adv. Appl. Clifford Algebras 30, 3 (2020). https://doi.org/10.1007/s00006-019-1029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-019-1029-1

Keywords

Mathematics Subject Classification

Navigation