Skip to main content
Log in

Bicomplex Analogs of Segal–Bargmann and Fractional Fourier Transforms

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We consider and discuss some basic properties of the bicomplex analog of the classical Bargmann space. The explicit expression of the integral operator connecting the complex and bicomplex Bargmann spaces is also given. The corresponding bicomplex Segal–Bargmann transform is introduced and studied as well. Its explicit expression as well as the one of its inverse are then used to introduce a class of two-parameter bicomplex Fourier transforms (bicomplex fractional Fourier transform). This approach is convenient in exploring some useful properties of this bicomplex fractional Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay, D., Luna-Elizarrarás, M.E., Shapiro, M., Struppa, D.C.: Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis. Springer Briefs in Mathematics. Springer, Cham (2014)

    Book  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  3. Banerjee, A., Datta, S.K., Hoque, Md.A.: Fourier transform for functions of bicomplex variables. Asian J. Math. Appl. 2015, ama0236 (2015)

  4. Banerjee, A., Datta, S.K., Hoque, Md.A: Inverse Fourier transform for bi-complex variables. Malaya J. Mat. 4(2), 263–270 (2016)

    Google Scholar 

  5. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  MathSciNet  Google Scholar 

  6. Bargmann, V.: Remarks on a Hilbert space of analytic functions. Proc. Natl. Acad. Sci. 48, 199–204 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  7. Benahmadi, A., Diki, K., Ghanmi, A.: On composition of Segal–Bargmann transforms. Complex Var. Elliptic Equ. 64(6), 950–964 (2019)

    Article  MathSciNet  Google Scholar 

  8. Colombo, F., Sabadini, I., Struppa, D.C., Vajiac, A., Vajiac, M.B.: Singularities of functions of one and several bicomplex variables. Ark. Mat. 49(2), 277–294 (2011)

    Article  MathSciNet  Google Scholar 

  9. Colombo, F., Sabadini, I., Struppa, D.C., Vajiac, A., Vajiac, M.: Bicomplex hyperfunctions. Ann. Mat. Pura Appl. (4) 190(2), 247–261 (2011)

    MathSciNet  MATH  Google Scholar 

  10. de Bie, H., Struppa, D.C., Vajiac, A., Vajiac, M.B.: The Cauchy–Kowalewski product for bicomplex holomorphic functions. Math. Nachr. 285(10), 1230–1242 (2012)

    Article  MathSciNet  Google Scholar 

  11. Dragoni, G.S.: Sulle funzioni olomorfe di una variabile bicomplessa. Reale Accademia d’Italia 5, 597–665 (1934)

    MATH  Google Scholar 

  12. Davenport Clyde, M.: An Extension of the Complex Calculus to Four Real Dimensions, with An Application to Special Relativity (M.S.). University of Tennessee, Knoxville (1978)

    Google Scholar 

  13. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)

    Book  Google Scholar 

  14. Gervais, Lavoie R., Marchildon, L., Rochon, D.: Hilbert space of the bicomplex quantum harmonic oscillator. AIP Conf. Proc. 1327, 148–157 (2011)

    ADS  MATH  Google Scholar 

  15. Gervais, Lavoie R., Marchildon, L., Rochon, D.: Infinite dimensional bicomplex Hilbert spaces. Ann. Funct. Anal. 1(2), 75–91 (2010)

    Article  MathSciNet  Google Scholar 

  16. Hall, B.C.: Holomorphic methods in analysis and mathematical physics. In: Pérez-Esteva, S., Villegas-Blas, C. (eds.) First Summer School in Analysis and Mathematical Physics: Quantization, the Segal–Bargmann Transform and Semiclassical Analysis, Contemporary Mathematics, vol. 260, pp. 1–59. AMS, Providence (2000)

    Chapter  Google Scholar 

  17. Mathieu, J., Marchildon, L., Rochon, D.: The bicomplex quantum Coulomb potential problem. Can. J. Phys. 91(12), 1093–1100 (2013)

    Article  ADS  Google Scholar 

  18. Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung. J. Reine Angew. Math. 66, 161–176 (1866)

    MathSciNet  Google Scholar 

  19. Li, C., McIntosh, A., Qian, T.: Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoam. 10, 665–721 (1994)

    Article  MathSciNet  Google Scholar 

  20. Luna-Elizarrarás, M.E., Shapiro, M., Struppa, D.C., Vajiac, A.: Bicomplex Holomorphic Functions. The Algebra, Geometry and Analysis of Bicomplex Numbers. Frontiers in Mathematics. Birkhäuser/Springer, Cham (2015)

    Book  Google Scholar 

  21. Price, G.B.: An Introduction to Multicomplex Spaces and Functions. Monographs and Textbooks in Pure and Applied Mathematics, vol. 140. Marcel Dekker Inc., New York (1991)

    MATH  Google Scholar 

  22. Rainville, E.D.: Special Functions. Chelsea Publishing Co., Bronx (1960)

    MATH  Google Scholar 

  23. Rochon, D.: On a relation of bicomplex pseudoanalytic function theory to the complexified stationary Schrödinger equation. Complex Var. Elliptic Equ. 53(6), 501–521 (2008)

    Article  MathSciNet  Google Scholar 

  24. Rochon, D., Shapiro, M.: On algebraic properties of bicomplex and hyperbolic numbers. An. Univ. Oradea Fasc. Mat. 11, 71–110 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Rochon, D., Tremmblay, S.: Bicomplex quantum mechanics: I. The generalized Schrödinger equation. Adv. Appl. Clifford Algebras 14, 231–248 (2004)

    Article  MathSciNet  Google Scholar 

  26. Rochon, D., Tremmblay, S.: Bicomplex quantum mechanics: II. The Hilbert space. Adv. Appl. Clifford Algebras 16, 135–157 (2006)

    Article  MathSciNet  Google Scholar 

  27. Ryan, J.: Complexified Clifford analysis. Complex Var. Theory Appl. 1, 119–149 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Ryan, J.: \({\mathbb{C}}^2\) extensions of analytic functions defined in the complex plane. Adv. Appl. Clifford Algebras 11(1), 137–145 (2001)

    Article  MathSciNet  Google Scholar 

  29. Segal, I.E.: Mathematical problems of relativistic physics. In: Proceedings of the Summer Seminar, Boulder, Colorado, 1960, Vol. II. Chap. VI. (1963)

  30. Segre, C.: Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici. Math. Ann. 40(3), 413–467 (1892)

    Article  MathSciNet  Google Scholar 

  31. Spampinato, N.: Estensione nel campo bicomplesso di due teoremi, del Levi-Civita e del Severi, per le funzioni olomorfe di due variabili bicomplesse I, II. Reale Accad. Naz Lincei. 22, 38–43 (1935)

    MATH  Google Scholar 

  32. Spampinato, N.: Sulla rappresentazione di funzioni di variabile bicomplessa totalmente derivabili. Ann. Mat. Pura Appl. 14(1), 305–325 (1935)

    Article  MathSciNet  Google Scholar 

  33. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  34. Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics, vol. 263. Springer, New York (2012)

    Book  Google Scholar 

Download references

Acknowledgements

A part of this work is done during the visit of the first author to Dipartimento di Matematica Politecnico di Milano (May–June 2017). The assistance of the members of “Ahmed Intissar’s seminar on Analysis, Partial Differential Equations and Spectral Geometry” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allal Ghanmi.

Additional information

Communicated by Frank Sommen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanmi, A., Zine, K. Bicomplex Analogs of Segal–Bargmann and Fractional Fourier Transforms. Adv. Appl. Clifford Algebras 29, 74 (2019). https://doi.org/10.1007/s00006-019-0993-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-019-0993-9

Keywords

Mathematics Subject Classification

Navigation