Skip to main content
Log in

Three-dimensional quadrics in extended conformal geometric algebras of higher dimensions from control points, implicit equations and axis alignment

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We introduce the quadric conformal geometric algebra inside the algebra of \({\mathbb {R}}^{9,6}\). In particular, this paper presents how three-dimensional quadratic surfaces can be defined by the outer product of conformal geometric algebra points in higher dimensions, or alternatively by a linear combination of basis vectors with coefficients straight from the implicit quadratic equation. These multivector expressions code all types of quadratic surfaces in arbitrary scale, location, and orientation. Furthermore, we investigate two types of definitions of axis aligned quadric surfaces, from contact points and dually from linear combinations of \({\mathbb {R}}^{9,6}\) basis vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Git clone https://git.renater.fr/garamon.git.

  2. Note that the product symbols \(\rfloor \) and \(\lfloor \) express left- and right contraction, respectively.

  3. Git clone https://git.renater.fr/garamon.git.

  4. E. Hitzer, Creative Peace License, https://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/.

References

  1. Breuils, S., Nozick, V., Fuchs, L.: Garamon: Geometric algebra library generator. Adv. Appl. Clifford Algebras 2019, submitted to the Topical Collection on Proceedings of AGACSE 2018, IMECC-UNICAMP, Campinas, Brazil, edited by Sebastià Xambó-Descamps and Carlile Lavor

  2. Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric algebra of \({\mathbb{R}}^{9,6}\) . Adv. Appl. Clifford Algebras 28:35 (March 2018), 16 pages. https://doi.org/10.1007/s00006-018-0851-1

  3. Buchholz, S., Tachibana, K., Hitzer, E.: Optimal learning rates for Clifford neurons. In de Sà, Joaquim Marques and Alexandre, Lu’is A. and Duch, Włodzisław and Mandic, Danilo (eds)Artificial Neural Networks – ICANN 2007 (2007), pp. 864–873. 17th International Conference, Porto, Portugal, September 9–13, 2007, Proceedings, Part I, Lecture Notes in Computer Science, vol 4668. Springer, Berlin, https://doi.org/10.1007/978-3-540-74690-4_88

    Google Scholar 

  4. Dorst, L., Van Den Boomgaard, R.: An analytical theory of mathematical morphology (1993). https://www.researchgate.net/profile/Leo_Dorst/publication/2811399_An_Analytical_Theory_of_Mathematical_Morphology/links/09e41510c0f213ff3b000000.pdf

  5. Du, J., Goldman, R., Mann, S.: Modeling 3D geometry in the Clifford algebra \({\mathbb{R}}^{4,4}\). Adv. Appl. Clifford Algebras 27, 4 (Dec 2017), 3039–3062. https://doi.org/10.1007/s00006-017-0798-7

    Article  MathSciNet  Google Scholar 

  6. Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27, 3 (April 2017), 2175–2199. https://doi.org/10.1007/s00006-017-0784-0, preprint: https://arxiv.org/pdf/1705.0019v1.pdf

    Article  MathSciNet  Google Scholar 

  7. Goldman, R., Mann, S.: R(4, 4) as a computational framework for 3-dimensional computer graphics. Adv. Appl. Clifford Algebras 25, 1 (March 2015), 113–149. https://doi.org/10.1007/s00006-014-0480-2

    Article  MathSciNet  Google Scholar 

  8. Gregory, A.L., Lasenby, J., Agarwal, A.: The elastic theory of shells using geometric algebra. R. Soc. Open Sci. 4, 3 (2017), 170065. https://doi.org/10.1098/rsos.170065

    Article  ADS  MathSciNet  Google Scholar 

  9. Hestenes, D.: The zitterbewegung interpretation of quantum mechanics. Found. Phys. 20, 10 (October 1990), 1213–1232. https://doi.org/10.1007/BF01889466, preprint: http://geocalc.clas.asu.edu/pdf/ZBW_I_QM.pdf

    Article  ADS  MathSciNet  Google Scholar 

  10. Hestenes, D.: New Foundations for Classical Mechanics, 2nd ed., vol. 99. Springer, Dordrecht (1999)

  11. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus - A Unified Language for Mathematics and Physics, vol. 5. Springer, Dordrecht (1984)

    Book  Google Scholar 

  12. Hitzer, E.: Geometric operations implemented by conformal geometric algebra neural nodes. Proc. SICE Symposium on Systems and Information 2008, 26–28 Nov. 2008, Himeji, Japan (2008), 357–362. preprint: https://arxiv.org/pdf/1306.1358.pdf

  13. Hitzer, E.: Three-dimensional quadrics in conformal geometric algebras and their versor transformations. Adv. Appl. Clifford Algebras 29:46 (July 2019), 16 pages. https://doi.org/10.1007/s00006-019-0964-1, preprint: vixra.org/abs/1902.0401

  14. Hitzer, E., Tachibana, K., Buchholz, S., Yu, I.: Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like. Adv. Appl. Clifford Algebras 19, 2 (July 2009), 339–364. https://doi.org/10.1007/s00006-009-0160-9

    Article  MathSciNet  Google Scholar 

  15. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)

    Book  Google Scholar 

  16. Luo, W., Hu, Y., Yu, Z., Yuan, L., L++, G.: A hierarchical representation and computation scheme of arbitrary-dimensional geometrical primitives based on CGA. Adv. Appl. Clifford Algebras 27, 3 (September 2017), 1977–1995. https://doi.org/10.1007/s00006-016-0697-3

    Article  MathSciNet  Google Scholar 

  17. Papaefthymiou, M., Papagiannakis, G.: Real-time rendering under distant illumination with conformal geometric algebra. Math. Methods Appl. Sci. 41(11), (July2018), 4131–4147. DOI:https://doi.org/10.1002/mma.4560.

    Article  ADS  MathSciNet  Google Scholar 

  18. Sangwine, S.J., Hitzer, E.: Clifford multivector toolbox (for MATLAB). Adv. Appl. Clifford Algebras 27, 1 (2017), 539–558. https://doi.org/10.1007/s00006-016-0666-x, preprint: http://repository.essex.ac.uk/16434/1/author_final.pdf

    Article  MathSciNet  Google Scholar 

  19. Vince, J.: Geometric Algebra for Computer Graphics. Springer, London (2008)

    Book  Google Scholar 

  20. Zhu, S., Yuan, S., Li, D., Luo, W., Yuan, L., Yu, Z.: MVTree for hierarchical network representation based on geometric algebra subspace. Adv. Appl. Clifford Algebras 28:39 (April 2018), 15 pages. https://doi.org/10.1007/s00006-018-0855-x

Download references

Acknowledgements

We do thank the organizers of the international conference AGACSE 2018 for the inspiring event held in the summer of 2018 in Campinas, Brazil, that greatly facilitated our collaboration. EH wants to thank God Soli Deo Gloria, and invite all readers of this work to take the Creative Peace LicenseFootnote 4 into consideration, when applying this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Breuils.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of AGACSE 2018, IMECC-UNICAMP, Campinas, Brazil, edited by Sebastià Xambó-Descamps and Carlile Lavor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breuils, S., Fuchs, L., Hitzer, E. et al. Three-dimensional quadrics in extended conformal geometric algebras of higher dimensions from control points, implicit equations and axis alignment. Adv. Appl. Clifford Algebras 29, 57 (2019). https://doi.org/10.1007/s00006-019-0974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-019-0974-z

Navigation