Advertisement

Spinorial Representation of Submanifolds in \({\varvec{SL}}_{\varvec{n}}{\varvec{(\mathbb {C})/SU(n)}}\)

  • Pierre BayardEmail author
Article
  • 37 Downloads

Abstract

We give a spinorial representation of a submanifold of any dimension and co-dimension in a symmetric space G / H,  where G is a complex semi-simple Lie group and H is a compact real form of G. This in particular includes \(SL_n(\mathbb {C})/SU(n),\) and extends the previously known spinorial representation of a surface in \(\mathbb {H}^3\) if \(n=2.\) We also recover the Bryant representation of a surface with constant mean curvature 1 in \(\mathbb {H}^3\) and its generalization for a surface with holomorphic right Gauss map in \(SL_n(\mathbb {C})/SU(n).\) As a new application, we obtain a fundamental theorem for the submanifold theory in that spaces.

Keywords

Spin geometry Isometric immersions Weierstrass representation Symmetric spaces 

Mathematics Subject Classification

53C27 53C35 53C42 

Notes

Acknowledgements

The author is very indebted to the referees for many comments which helped to improve considerably the writing of the paper. The author was supported by the project PAPIIT-UNAM IA106218.

References

  1. 1.
    Aiyama, R., Akutagawa, K.: Kenmotsu–Bryant type representation formulas for constant mean curvature surfaces in \(\mathbb{H}^3(-c^2)\) and \(\mathbb{S}^{3}_1(c^2)\). Ann. Glob. Anal. Geom. 17, 49–75 (1998)CrossRefGoogle Scholar
  2. 2.
    Akutagawa, K., Nishikawa, S.: The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space. Tohoku Math. J. 42, 67–82 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bär, C.: The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Arch. Math. 59, 65–79 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bär, C.: Extrinsic bounds for the eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom. 16, 573–596 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bayard, P.: On the spinorial representation of spacelike surfaces into 4-dimensional Minkowski space. J. Geom. Phys. 74, 289–313 (2013)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bayard, P., Lawn, M.-A., Roth, J.: Spinorial representation of surfaces in four-dimensional space forms. Ann. Glob. Anal. Geom. 44(4), 433–453 (2013)CrossRefGoogle Scholar
  7. 7.
    Bayard, P., Lawn, M.-A., Roth, J.: Spinorial representation of submanifolds in Riemannian space forms. Pac. J. Math. 291(1), 51–80 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bayard, P., Patty, V.: Spinor representation of Lorentzian surfaces in \({\mathbb{R}}^{2,2}\). J. Geom. Phys. 95, 74–75 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bayard, P., Roth, J., Zavala Jiménez, B.: Spinorial representation of submanifolds in metric Lie groups. J. Geom. Phys. 114, 348–374 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Berdinskii, D.A., Taimanov, I.A.: Surfaces in three-dimensional Lie groups. Sibirsk Mat. Zh. 46(6), 1248–1264 (2005)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bianchi, L.: Sulle superficie a curvatura nulla in geometria ellittica. Ann. Mat. Pure Appl. 24, 93–129 (1896)CrossRefGoogle Scholar
  12. 12.
    Bourguignon, J.P., Hijazi, O., Milhorat, J.-L., Moroianu, A., Moroianu, S.: A Spinorial Approach to Riemannian and Conformal Geometry. EMS Monographs in Mathematics. ISBN:978-3-03719-136-1 (2015)Google Scholar
  13. 13.
    Bryant, R.: Surfaces of mean curvature one in hyperbolic space. Théorie des variétés minimales et applications (Palaiseau, 1983–1984). Astérisque 154–155, 321–347 (1987)Google Scholar
  14. 14.
    Burstall, F., Rawnsley, J.: Twistor Theory for Riemannian Symmetric Spaces. Lecture Notes in Mathematics. vol 1424, Springer, Verlag, Berlin, Heidelberg. ISBN:978-3-540-52602-5 (1990)Google Scholar
  15. 15.
    do Carmo, M., Dajczer, M.: Local isometric immersions of \({\mathbb{R}}^2\)into \({\mathbb{R}}^4\). J. Reine Angew. Math. 442, 205–219 (1993)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dajczer, M., Tojeiro, R.: On flat surfaces with flat normal bundle in space forms. Houston Math. J. 21, 319–338 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Helgason, S.: Differential Geometry, Lie groups, and Symmetric Spaces. Graduate Studies in Mathematics 34, American Mathematical Society. ISBN:978-0-8218-2848-9 (2001)Google Scholar
  18. 18.
    Friedrich, T.: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Gálvez, J., Martínez, A., Milán, F.: Complete constant gaussian curvature surfaces in the Minkowski space and harmonic diffeomorphisms onto the hyperbolic plane. Tohoku Math. J. 55, 467–476 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gálvez, J.A., Martínez, A., Milán, F.: Flat surfaces in the hyperbolic 3-space. Math. Ann. 316, 419–435 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gálvez, J., Martínez, A., Milán, F.: Flat surfaces in \(L^4\). Ann. Glob. Anal. Geom. 20(3), 243–251 (2001)CrossRefGoogle Scholar
  22. 22.
    Gálvez, J., Mira, P.: Isometric immersions of \({\mathbb{R}}^2\) into \({\mathbb{R}}^4\) and perturbation of Hopf tori. Math. Z. 266(1), 207–227 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gálvez, J., Mira, P.: An alternative proof of the Bryant representation. Differential geometry and its applications, Matfyzpress, Prague pp. 151–155 (2005)Google Scholar
  24. 24.
    Hoffman, D., Osserman, R.: The Gauss map of surfaces in \({\mathbb{R}}^3\) and \({\mathbb{R}}^4\). Proc. Lond. Math. Soc. 50(1), 27–56 (1985)CrossRefGoogle Scholar
  25. 25.
    Kenmotsu, K.: Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245, 89–99 (1979)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kobayashi, O.: Maximal surfaces in the 3-dimensional Minkowski space \(L^3\). Tokyo J. Math. 6(2), 297–309 (1983)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Wiley, Amsterdam (1996)zbMATHGoogle Scholar
  28. 28.
    Kokubu, M., Takahashi, M., Umehara, M., Yamada, K.: An analogue of minimal surface theory in \(SL_n({\mathbb{C}})/SU(n)\). Trans. AMS 354(4), 1299–1325 (2001)CrossRefGoogle Scholar
  29. 29.
    Konopelchenko, B.G.: Induced surfaces and their integrable dynamics. Stud. Appl. Math. 96(1), 9–51 (1996)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Konopelchenko, B.G.: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy. Ann. Glob. Anal. Geom. 18(1), 61–74 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lawn, M.-A.: A spinorial representation for Lorentzian surfaces in \({\mathbb{R}}^{2,1}\). J. Geom. Phys. 58(6), 683–700 (2008)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Lawn, M.-A., Roth, J.: Spinorial characterization of surfaces in pseudo-Riemannian space forms. Math. Phys. Anal. Geom. 14(3), 185–195 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    de Lira, J.H.S., Hinojosa, J.A.: The Gauss map of minimal surfaces in Berger spheres. Ann. Glob. Anal. Geom. 37, 143–162 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    de Lira, J.H.S., Hinojosa, J.A.: The Gauss map of minimal surfaces in the Anti-de Sitter space. J. Geom. Phys. 61, 610–623 (2011)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Magid, M.A.: Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 20, 447–464 (1991)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Meeks, W., Perez, J.: Constant mean curvature surfaces in metric Lie groups, in “Geometric Analysis: Partial Differential Equations and Surfaces”. Contemp. Math. 570, 25–110 (2012)CrossRefGoogle Scholar
  37. 37.
    Morel, B.: Surfaces in \(\mathbb{S}^3\) and \(\mathbb{H}^3\) via spinors. Actes du séminaire de théorie spectrale, Institut Fourier, Grenoble 23, 9–22 (2005)Google Scholar
  38. 38.
    Musso, E., Nicolodi, L.: The spinor representation of CMC 1 surfaces in hyperbolic space. Note Mat. 28, 317–339 (2009)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Nakad, R., Roth, J.: Complex and Lagrangian surfaces of the complex projective plane via Kählerian Killing \(Spin^c\) spinors. J. Geom. Phys. 116, 316–329 (2017)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Patty, V.: A generalized Weierstrass representation of Lorentzian surfaces in \({\mathbb{R}}^{2,2}\) and applications. Int. J. Geom. Methods Mod. Phys. 13(6), 26 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Roth, J.: Spinorial characterizations of surfaces into 3-homogeneous manifolds. J. Geom. Phys. 60, 1045–1061 (2010)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Taimanov, I.A.: Modified Novikov–Veselov equation and differential geometry of surfaces. Am. Math. Soc. Transl. Ser. 2(179), 133–151 (1997)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Taimanov, I.A.: Surfaces of revolution in terms of solitons. Ann. Glob. Anal. Geom. 15(5), 419–435 (1997)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Varlamov, V.V.: Spinor representations of surfaces in 4-dimensional pseudo-Riemannian manifolds (2000). arXiv:math/0004056

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias, Universidad Nacional Autónoma de MéxicoCiudad UniversitariaDelegación CoyoacánMexico

Personalised recommendations