Characterization of the Principal 3D Slices Related to the Multicomplex Mandelbrot Set

  • Guillaume Brouillette
  • Dominic RochonEmail author


This article focuses on the dynamics of the different tridimensional principal slices of the multicomplex Multibrot sets. First, we define an equivalence relation between those slices. Then, we characterize them in order to establish similarities between their behaviors. Finally, we see that any multicomplex tridimensional principal slice is equivalent to a tricomplex slice up to an affine transformation. This implies that, in the context of tridimensional principal slices, Multibrot sets do not need to be generalized beyond the tricomplex space.


Multicomplex dynamics Multibrot Generalized Mandelbrot sets Metatronbrot 3D Fractals Tricomplex space 

Mathematics Subject Classification

37F50 32A30 30G35 00A69 



DR is grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. GB would like to thank the FRQNT and the ISM for the awards of graduate research grants. The authors are grateful to Louis Hamel and Étienne Beaulac, from UQTR, for their useful work on the MetatronBrot Explorer in Java.


  1. 1.
    Baribeau, L., Ransford, T.: Cross-sections of multibrot sets. J. Anal. 24(1), 95–101 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beardon, A.F.: Iteration of Rational Functions: Complex Analytic Dynamical Systems, Volume 132 of Graduate Texts in Mathematics, 1st edn. Springer, New York (1991)CrossRefGoogle Scholar
  3. 3.
    Douady, A., Hubbard, J.H.: Itération des polynômes quadratiques complexes. C.R. Acad. Sci. Paris Série I Math. 294, 123–126 (1982)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Garant-Pelletier, V.: Ensembles de Mandelbrot et de Julia classiques, généralisés aux espaces multicomplexes et théorème de Fatou-Julia généralisé. Master’s thesis, Université du Québec à Trois-Rivières, Canada (2011)Google Scholar
  5. 5.
    Garant-Pelletier, V., Rochon, D.: On a generalized Fatou–Julia theorem in multicomplex spaces. Fractals 17(3), 241–255 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Martineau, É.: Bornes de la distance à l’ensemble de Mandelbrot généralisé. Master’s thesis, Université du Québec à Trois-Rivières, Canada (2004)Google Scholar
  7. 7.
    Martineau, É., Rochon, D.: On a bicomplex distance estimation for the Tetrabrot. Int. J. Bifurc. Chaos 15(9), 3039–3050 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Meckes, E.S., Meckes, M.W.: Linear Algebra. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge (2018)zbMATHGoogle Scholar
  9. 9.
    Milnor, J.: Dynamics in One Complex Variable : Introductory Lectures, 2nd edn. Springer Vieweg, Berlin (2000)CrossRefGoogle Scholar
  10. 10.
    Parisé, P.-O.: Les ensembles de Mandelbrot tricomplexes généralisés aux polynômes \(\zeta ^p+c\). Master’s thesis, Université du Québec à Trois-Rivières, Canada (2017)Google Scholar
  11. 11.
    Parisé, P.-O., Ransford, T., Rochon, D.: Tricomplex dynamical systems generated by polynomials of even degree. Chaot. Model. Simul. 1, 37–48 (2017)zbMATHGoogle Scholar
  12. 12.
    Parisé, P.-O., Rochon, D.: A study of dynamics of the tricomplex polynomial \(\eta ^p+ c\). Nonlinear Dyn. 82(1–2), 157–171 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Parisé, P.-O., Rochon, D.: Tricomplex dynamical systems generated by polynomials of odd degree. Fractals 25(3), 1–11 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Price, G.B.: An Introduction to Multicomplex Spaces and Functions. M. Dekker, New York (1991)zbMATHGoogle Scholar
  15. 15.
    Rochon, D.: Sur une généralisation des nombres complexes: les tétranombres. Master’s thesis, Université de Montréal, Canada (1997)Google Scholar
  16. 16.
    Rochon, D.: A generalized Mandelbrot set for bicomplex numbers. Fractals 8(4), 355–368 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rochon, D.: A Bloch constant for hyperholomorphic functions. Complex Var. 44, 85–201 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Rochon, D.: On a generalized Fatou–Julia theorem. Fractals 11(3), 213–219 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rochon, D., Shapiro, M.: On algebraic properties of bicomplex and hyperbolic numbers. Anal. Univ. Oradea Fasc. Math. 11(71), 110 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Sobczyk, G.: The hyperbolic number plane. Coll. Math. J. 26(4), 268–280 (1995)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Struppa, D.C., Vajiac, A., Vajiac, M.B.: Holomorphy in multicomplex spaces. In: Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, pp. 617–634. Springer, Berlin (2012)Google Scholar
  22. 22.
    Vajiac, A., Vajiac, M.B.: Multicomplex hyperfunctions. Complex Var. Elliptic Equ. 57(7–8), 751–762 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, X.-Y., Song, W.-J.: The generalized M-J sets for bicomplex numbers. Nonlinear Dyn. 72(1–2), 17–26 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Département de mathématiques et d’informatiqueUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations