Skip to main content

Product of Three Octonions


This paper considers octonions that are the eight-dimensional hypercomplex numbers characterized by multiplicative non-associativity. The decomposition of the product of three octonions with conjugate central factor into the sum of mutually orthogonal triple anticommutator, triple commutator and associator, is introduced in an obvious way by commuting the factors and alternating the multiplication order. The commutator is regarded as a generalization of the cross product to the case of three arguments both for quaternions and for octonions. It is shown that the decomposition found coincides with the decomposition of the triple octonion product into symmetric-antisymmetric or, in other words, symmetric-skew-symmetric parts. It is verified that the resulting additive decomposition is equivalent to the known solution derived and presented by Okubo in insufficiently perfect form. Based on the results of Okubo, a slight correction of modern definitions of the triple cross product is proposed.

This is a preview of subscription content, access via your institution.


  1. Baez, J.: The octonions. Bull. Am. Math. Soc. 39(2), 145–205 (2002)

    MathSciNet  Article  Google Scholar 

  2. Barykin, V.N.: Nonassociativity on the Combinatorial Operation, p. 236. Kovcheg Publishing House, Minsk (2011) (Russian)

  3. Blum, V.S., Zabolotsky, V.P.: Immune system and immunocomputing. Math. Morphol. 6(4), 16 (2007) (Russian)

  4. Casanova, G.: L’algbre vectorielle, p. 127. Presses de Universitaries de France, Paris (1976)

    Google Scholar 

  5. Dirac, P.A.M.: Application of quaternions to Lorentz transformations. Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 50, 261–270 (1944/1945)

  6. Dray, T., Manogue, C.A.: The octonionic eigenvalue problem. Adv. Appl. Clifford Algebra 8(2), 341–364 (1998)

    MathSciNet  Article  Google Scholar 

  7. Dray, T., Manogue, C.A.: The Geometry of the Octonions, p. 228. World Scientific, Singapore (2015)

    Book  Google Scholar 

  8. Flaut, C.: Some remarks concerning Quaternions and Octonions. arXiv:1711.10434 (2017)

  9. Furman, Ya.A.: Processing of quaternion signals specifying spatially located group point objects. Pattern Recognit. Image Anal. (Adv. Math. Theory Appl.) 12(2), 175–193 (2002)

  10. Furman, Ya.A., Krevetsky, A.V., Rozhentsov, A.A., Khafizov, R.G., Leukhin, A.N., Egoshina, I.L.: Complex-valued and Hypercomplex Systems in Multidimensional Signal Processing Problems. State Publishing House of Physical and Mathematical Literature, Moscow (2004) (Russian)

  11. Hamilton, W.R.: Lectures on Quaternions, p. 890. Hodges and Smith, Dublin (1853)

    Google Scholar 

  12. Kantor, I.L., Solodovnikov, A.S.: Hypercomplex Numbers: An Elementary Introduction to Algebras, p. 166. Springer, New York (1989)

    Book  Google Scholar 

  13. Kerner, R.: Geometric structures on Lie algebras and the Hitchin flow. Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg vorgelegt im Fachbereich Mathematik von Marco Freibert aus Würzburg, Humburg (2013)

  14. Kharinov, M.V.: Logical puzzle game “DaltoRainbow”. USSR patent 1799274 (1990) (Russian)

  15. Kharinov, M.V.: Permutational and hidden symmetry on the example of isomorphic Hadamard matrices. Applications in the field of artificial intelligence. In: Proceedings of the Second International Conference on “Means of mathematical modeling”, vol. 5, pp. 247–254. SPbSTU Publishing House, St. Petersburg (1999). (Russian)

  16. Kulakov, A.Yu.: Model and algorithms for reconfiguration of the control system for the living of a spacecraft, Ph.D. thesis. St. Petersburg Institute of Informatics and Automation of the RAS, St. Petersburg (2017) (Russian)

  17. Lurie, A.I.: Analytical Mechanics. State Publishing House of Physical and Mathematical Literature, Moscow (1961) (Russian)

  18. Madelung, E.: Die Mathematischen Hilfsmittel des Physikers, p. 247. Julius Springer, Berlin (1922)

    Book  Google Scholar 

  19. Okubo, S.: Triple products and Yang–Baxter equation. I. Octonionic and quaternionic triple systems. J. Math. Phys. 34(7), 3273–3291 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  20. Salamon, D.A., Walpuski, T.: Notes on the octonions. arXiv:1005.2820 [math.RA] (2010)

  21. Silagadze, Z.K.: Multi-dimensional vector product. J. Phys. A Math. Gen. 35(23), 4949–4953 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  22. Tarakanov, A.O.: Mathematical models of information processing based on self-assembly results. Doctoral diss., St. Petersburg Institute of Informatics and Automation of the RAS, St. Petersburg (1999) (Russian)

  23. Todorov, I., Dubois-Violette, M.: Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra. Bures-sur-Yvette preprint IHES/P/17/03 (2017)

  24. Yusupov, R.M.: The History of Computer Science and Cybernetics in St. Petersburg (Leningrad), p. 152. Nauka Publishing House, St. Petersburg (2010) (Russian)

  25. Zotov, Yu.K., Timofeev, A.V.: Controllability and robust stabilization of software movements of aircraft with nonlinear dynamics. In: Proc. of SPIIRAS, vol. 3, no. 2, pp. 383–405. Nauka Publishing House, St. Petersburg (2006) (Russian)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mikhail Kharinov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Rafal Ablamowicz

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kharinov, M. Product of Three Octonions. Adv. Appl. Clifford Algebras 29, 11 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Additive decomposition
  • Quaternions
  • Octonions
  • Triple cross product

Mathematics Subject Classification

  • Primary 11R52
  • Secondary 00A06