Skip to main content
Log in

Localized States in Quantum Field Theory

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Localized states in relativistic quantum field theories are usually considered as problematic, because of their seemingly strange (noncovariant) behavior under Lorentz transformations, and because they can spread faster than light. We point out that a careful quantum field theoretic analysis in which we distinguish between basis position states and wave packet states clarifies the issue of Lorentz covariance. The issue of causality is resolved by observing that superluminal transmission of information cannot be achieved by such wave packets. Within this context it follows that the Reef-Schlieder theorem, which proves that localized states can exhibit influence on each other over space like distances, does not imply that such states cannot exist in quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Hashimi, M.H., Wiese, U.-J.: Minimal position-velocity uncertainty wave packets in relativistic and non-relativistic quantum mechanics. Ann. Phys. 324, 2599–2621 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Antoniou, I., Karpov, E., Pronko, G.: Non-Locality in electrodynamics. Found. Phys. 31, 1641–1655 (2001)

    Article  MathSciNet  Google Scholar 

  3. Barat, N., Kimball, J.C.: Localization and causality for a free particle. Phys. Lett. A 308, 110–115 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Buscemi, F., Compagno, G.: Causality and localization operators. Phys. Lett. A 334, 357–362 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cirilo-Lombardo, D.J.: Relativistic dynamics, green function and pseudidifferential operators. J. Math. Phys. 57, 063503 (2016). https://doi.org/10.1063/1.4953368. arXiv:1610.03624 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Deutsch, D.: Scientific American, March 1994, pp. 68–74

  7. Deutsch, D.: Quantum mechanics near closed timelike lines. Phys. Rev. D 44, 3197–3217 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Deutsch, D.: The Fabric of Reality. Penguin Press, London (1997)

    Google Scholar 

  9. DeWitt, B.S.: Quantum mechanics and reality. Phys. Today 23, 155–165 (1970)

    Article  Google Scholar 

  10. DeWitt, B.S.: The many-universes interpretation of quantum mechanics. In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics, pp. 167–218. Princeton University Press, Princeton (1973)

    Google Scholar 

  11. Eckstein, M., Miller, T.: Causal evolution of wave packets. Phys. Rev. A 95(3), 032106 (2017). https://doi.org/10.1103/PhysRevA.95.032106. arXiv:1610.00764 [quant-ph]

    Article  ADS  Google Scholar 

  12. Everett, H.: On the Foundations of Quantum Mechanics, pp. 1–140. Princeton University, Thesis (1956)

  13. Everett, H.: “Relative State” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  14. Everett, H.: Theory of the universal wavefunction. In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics, pp. 3–140. Princeton University Press, Princeton (1973)

    Google Scholar 

  15. Fleming, G.N.: Lorentz invariant state reduction and localization. In: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 1988, Volume Two: Symposia and Invited Papers (1988), pp. 112–126

    Google Scholar 

  16. Fleming, G.N.: Covariant position operators, spin, and locality. Phys. Rev. 137, B188 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  17. Foldy, L.L.: Synthesis of covariant particle equations. Phys. Rev. 102, 568–581 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  18. Fonda, L., Ghirardi, G.C.: Symmetry Principles in Quantum Physic. Decker, New York (1970)

    Google Scholar 

  19. Gavrilov, S.P., Gitman, D.M.: Quantization of point-like particles and consistent relativistic quantum mechanics’. Int. J. Mod. Phys. A 15, 4499 (2000). arXiv:hep-th/0003112

    ADS  MATH  Google Scholar 

  20. Haag, R.: Local Quantum Physics. Springer, Berlin (1996)

    Book  Google Scholar 

  21. Hegerfeldt, G.C.: Remarks on causality and particle localization. Phys. Rev. D 10, 3320 (1974)

    Article  ADS  Google Scholar 

  22. Hegerfeldt, G.C.: Violation of causality in relativistic quantum theory? Phys. Rev. Lett. 54, 2395–2398 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hegerfeldt, G.C., Ruijsenaars, S.N.M.: Remarks on causality, localization, and spreading of wave packets. Phys. Rev. D 22, 377–384 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  24. Herrmann, L.O.: Localization in Relativistic Quantum Theories, PhilSci Archive (2010), http://philsci-archive.pitt.edu/5427/. Accessed 8 Sept 2018

  25. Horwath, S.P., Schritt, D., Ahluwalia, D.V.: Amplitudes for space-like separations and causality, arXiv: 1110.1162 [hep-ph]

  26. Kálnay, A.J.: Lorentz-invariant localization for elementary systems. Phys. Rev. D 1, 1092–1104 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  27. Karpov, E., Ordonez, G., Petrosky, T., Prigogine, I., Pronko, G.: Causality, delocalization and possitivity of energy. Phys. Rev. A 62, 012103 (2000)

    Article  ADS  Google Scholar 

  28. Malament, D.: In defense of a dogma: why there cannot be a relativistic quantum mechanical theory of (localized) particles. In: Clifton, R. (ed.) Perspectives on Quantum Reality. Springer, Kluwer (1996)

    Google Scholar 

  29. Manoukian, E.B.: Rediscovering the Newton–Wigner operator from a space-time description of quantum field theory. Nuovo Cim. A 103, 1495–1497 (1990)

    Article  ADS  Google Scholar 

  30. Mir-Kasimov, R.M.: The Newton–Wigner state localization and the commutativity of the configuration space. Phys. Part. Nucl. Lett. 3, 280–289 (2006)

    Article  Google Scholar 

  31. Monahan, A.H., McMillan, M.: Lorentz boost of the Newton–Wigner position operator. Phys. Rev. A 56, 2563–2566 (1997)

    Article  ADS  Google Scholar 

  32. Mosley, S.N., Farina, J.E.G.: Causality and the scalar field energy. J. Phys. A Math. Gen. 23, 3991–3996 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  33. Newton, T., Wigner, E.: Localized states for elementary systems. Rev. Mod. Phys. 21, 400–406 (1949)

    Article  ADS  Google Scholar 

  34. Nikolić, H.: The general-covariant and gauge-invariant theory of quantum particles in classical backgrounds. Int. J. Mod. Phys. D 12, 407–477 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  35. Nikolić, H.: Probability in relativistic Bohmian mechanics of particles and strings. Found. Phys. 38, 869–881 (2008). (Appendix A)

    Article  ADS  MathSciNet  Google Scholar 

  36. Nimtz, G.: Do evanescent modes violate relativistic causality? Lect. Notes Phys. 702, 506–531 (2006)

    Article  Google Scholar 

  37. Padmanabhan, T.: Quantum Field Theory. Springer, New York (2016)

    Book  Google Scholar 

  38. Pavšič, M.: Towards understanding quantum mechanics, general relativity and the tachyonic causality paradoxes. Lett. Nuov. Cim. 30, 111–119 (1981)

    Article  Google Scholar 

  39. Pavšič, M.: The Landscape of Theoretical Physics: A Global View; From Point Particles to the Braneworld and Beyond, in Search of a Unifying Principle. Springer, Kluwer (2001)

    MATH  Google Scholar 

  40. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  41. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Perseus Books Publishing, Massachusetts (1995)

    Google Scholar 

  42. Rached, M.Z., Recami, E., Fontana, F.: Superluminal Localized Solutions to the Maxwell equations propagating through normal (non-evanescent) regions. Ann. de la Fondation Louis de Broglie 26, 541–554 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Feldern. Nuov. Cim. 22, 1051–1068 (1961)

    Article  Google Scholar 

  44. Rosenstein, B., Horwitz, L.P.: Probability current versus charge current of a relativistic particle. J. Phys. A Math. Gen. 18, 2115–2121 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  45. Rosenstein, B., Usher, M.: Explicit illustration of causality violation: noncausal relativistic wave-packet evolution. Phys. Rev. D 36, 2381–2384 (1987)

    Article  ADS  Google Scholar 

  46. Ruijgrok, T.W.: On Localization in Relativistic Quantum Mechanics. In: Theoretical Physics Fin de Siècle. Lecture Notes on Physics, vol. 539. Springer, Heidelberg (2000)

  47. Ruijsenaars, S.N.M.: On Newton–Wigner localization and superluminal propagation speeds. Ann. Phys. 137, 33–43 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Row, Peterson and Company, Evanston (1961)

    MATH  Google Scholar 

  49. Teller, P.: An Interpretative Introduction to Quantum Field Theory. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  50. Valente, G.: Does the Reeh–Schlieder theorem violate relativistic causality? Stud. Hist. Philos. Mod. Phys. 48, 147–155 (2014)

    Article  MathSciNet  Google Scholar 

  51. Wagner, R.E., Shields, B.T., Ware, M.R., Su, Q., Grobe, R.: Causality and relativistic localization in one-dimensional Hamiltonians. Phys. Rev. A 83, 062106 (1–8) (2011)

    Article  ADS  Google Scholar 

  52. Wightman, A.S.: On the localizability of quantum mechanical systems. Rev. Mod. Phys. 34, 845–872 (1962)

    Article  ADS  Google Scholar 

  53. Wightman, A.S., Schweber, S.S.: Configuration methods in relativistic quantum field theory I. Phys. Rev. 98, 812–837 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  54. Wikipedia, Planck units, https://en.wikipedia.org/wiki/Planck_units. Accessed 8 Sept 2018

  55. Zeh, H.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Pavšič.

Additional information

This article is part of the Topical Collection on Homage to Prof. W.A. Rodrigues Jr. edited by Jayme Vaz Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavšič, M. Localized States in Quantum Field Theory. Adv. Appl. Clifford Algebras 28, 89 (2018). https://doi.org/10.1007/s00006-018-0904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0904-5

Keywords

Navigation