Skip to main content
Log in

Geometric Algebra for Conics

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We present a particular geometric algebra together with such an embedding of two–dimensional Euclidean space that the algebra elements may be in the most efficient way interpreted as arbitrary conic sections. Consequently, in this setting we provide full description of the conic sections analysis, classification and their transformations. Examples that show the functionality and consistency are provided in Maple together with the source code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablamowicz, R., Fauser, B.: CLIFFORD/Bigebra, a Maple package for Clifford (Co)algebra computations. http://www.math.tntech.edu/rafal/ (2015)

  2. Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27, 2175 (2017). https://doi.org/10.1007/s00006-017-0784-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27(3), 2175–2199 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gonzalez-Jimenez, L., Carbajal-Espinosa, O., Loukianov, A., Bayro-Corrochano, E.: Robust pose control of robot manipulators using conformal geometric algebra. Adv. Appl. Clifford Algebras 24(2), 533–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hildenbrand, D.: Foundations of geometric algebra computing. Springer, New York (2013)

    Book  MATH  Google Scholar 

  6. Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric algebras for uniform colour spaces. Math. Meth. Appl. Sci. (2017). https://doi.org/10.1002/mma.4489

  7. Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27(1), 621–632 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lounesto, P.: Clifford algebra and spinors, 2nd edn. CUP, Cambridge (2006)

    MATH  Google Scholar 

  9. Perwass, Ch.: Geometric algebra with applications in engineering. Springer, New York (2009)

    MATH  Google Scholar 

  10. Zamora-Esquivel, J.: \(\mathbb{G}_{6,3}\) geometric algebra; description and implementation. Adv. Appl. Clifford Algebras 24(2), 493–514 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Hrdina.

Additional information

This article is part of the Topical Collection on Proceedings ICCA 11, Ghent, 2017, edited by Hennie De Schepper, Fred Brackx, Joris van der Jeugt, Frank Sommen, and Hendrik De Bie

The research was supported by the Czech Science Foundation under Grant no.: 17-21360S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrdina, J., Návrat, A. & Vašík, P. Geometric Algebra for Conics. Adv. Appl. Clifford Algebras 28, 66 (2018). https://doi.org/10.1007/s00006-018-0879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0879-2

Keywords

Mathematics Subject Classification

Navigation