Abstract
We present a particular geometric algebra together with such an embedding of two–dimensional Euclidean space that the algebra elements may be in the most efficient way interpreted as arbitrary conic sections. Consequently, in this setting we provide full description of the conic sections analysis, classification and their transformations. Examples that show the functionality and consistency are provided in Maple together with the source code.
Similar content being viewed by others
References
Ablamowicz, R., Fauser, B.: CLIFFORD/Bigebra, a Maple package for Clifford (Co)algebra computations. http://www.math.tntech.edu/rafal/ (2015)
Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27, 2175 (2017). https://doi.org/10.1007/s00006-017-0784-0
Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27(3), 2175–2199 (2017)
Gonzalez-Jimenez, L., Carbajal-Espinosa, O., Loukianov, A., Bayro-Corrochano, E.: Robust pose control of robot manipulators using conformal geometric algebra. Adv. Appl. Clifford Algebras 24(2), 533–552 (2014)
Hildenbrand, D.: Foundations of geometric algebra computing. Springer, New York (2013)
Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric algebras for uniform colour spaces. Math. Meth. Appl. Sci. (2017). https://doi.org/10.1002/mma.4489
Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27(1), 621–632 (2017)
Lounesto, P.: Clifford algebra and spinors, 2nd edn. CUP, Cambridge (2006)
Perwass, Ch.: Geometric algebra with applications in engineering. Springer, New York (2009)
Zamora-Esquivel, J.: \(\mathbb{G}_{6,3}\) geometric algebra; description and implementation. Adv. Appl. Clifford Algebras 24(2), 493–514 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on Proceedings ICCA 11, Ghent, 2017, edited by Hennie De Schepper, Fred Brackx, Joris van der Jeugt, Frank Sommen, and Hendrik De Bie
The research was supported by the Czech Science Foundation under Grant no.: 17-21360S.
Rights and permissions
About this article
Cite this article
Hrdina, J., Návrat, A. & Vašík, P. Geometric Algebra for Conics. Adv. Appl. Clifford Algebras 28, 66 (2018). https://doi.org/10.1007/s00006-018-0879-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00006-018-0879-2