Skip to main content

A Curvature-Based Descriptor for Point Cloud Alignment Using Conformal Geometric Algebra

Abstract

This paper presents a descriptor for course alignment of point clouds using conformal geometric algebra. The method is based on selecting keypoints depending on shape factors to identify distinct features of the object represented by the point cloud, and a descriptor is then calculated for each keypoint by fitting two spheres that describe the local curvature. The method for estimating the point correspondences is to a larger extent based on geometric arguments than the method of Kleppe et al. (IEEE Trans Autom Sci Eng, 2017), which results in improved performance. The accuracy of the curvature-based descriptor is validated in experiments, and is shown to compare favorably to state-of-the-art methods in an experiment on course alignment of industrial parts to be assembled with robots.

References

  1. 1.

    Alexander, A.L., Hasan, K., Kindlmann, G., Parker, D.L., Tsuruda, J.S.: A geometric analysis of diffusion tensor measurements of the human brain. Magn. Reson. Med. 44(2), 283–291 (2000)

    Article  Google Scholar 

  2. 2.

    Besl, P., McKay, N.: A Method for Registration of 3-D Shapes. IEEE Trans Pattern Anal Mach Intell 14(2), 239–256 (1992)

  3. 3.

    Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. Comput. Gr. Forum 32(5), 113–123 (2013)

    Article  Google Scholar 

  4. 4.

    Castellani, U., Bartoli, A.: 3D shape registration. 3D Imaging. Anal. Appl. 9781447140, 221–264 (2014)

    Google Scholar 

  5. 5.

    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedingsof the 1991 IEEE International Conference on Robotics and Automation, vol. 10(3), pp. 2724–2729 (1991)

  6. 6.

    Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)

    Article  Google Scholar 

  7. 7.

    Colapinto, P.: Versor: Spatial computing with conformal geometric algebra. Master’s thesis, University of California at Santa Barbara (2011). http://versor.mat.ucsb.edu

  8. 8.

    Dorst, L.: Total least squares fitting of k-spheres in n-D Euclidean space using an (n+2)-D isometric representation. J. Math. Imaging Vis. 50(3), 214–234 (2014)

    Article  MATH  Google Scholar 

  9. 9.

    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco (2009)

    Google Scholar 

  10. 10.

    Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: Efficient and robust 3D object recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 998–1005 (2010)

  11. 11.

    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: recognizing objects in range data using regional point descriptors. In: European Conference on Computer Vision, vol. 3023, pp. 224–237 (2004)

  12. 12.

    Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010). Accessed 13 Nov 2017

  13. 13.

    Hildenbrand, D.: Foundations of Geometric Algebra Computing. Geometry and Computing, vol. 8. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  14. 14.

    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  15. 15.

    Kleppe, A., Tingelstad, L., Egeland, O.: Course alignment for model fitting of point clouds using a curvature-based descriptor. IEEE Trans. Autom. Sci. Eng. (2017) (accepted)

  16. 16.

    Li, H., Hartley, R.: The 3D–3D registration problem revisited. In: Proceedings of the IEEE International Conference on Computer Vision (2007)

  17. 17.

    Pratt, V.: Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH Comput. Gr. 21(4), 145–152 (1987)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ritter, M., Benger, W., Cosenza, B., Pullman, K., Moritsch, H., Leimer, W.: Visual data mining using the point distribution tensor. In: ICONS, pp. 10–13 (2012)

  19. 19.

    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, pp. 45–152 (2001)

  20. 20.

    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009)

  21. 21.

    Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: Intelligent Robots and Systems (IROS), pp. 2155–2162 (2010)

  22. 22.

    Rusu, R.B., Cousins, S.: 3D is here: point cloud library. In: IEEE International Conference on Robotics and Automation, pp. 1 – 4 (2011)

  23. 23.

    Sabata, B., Aggarwal, J.K.: Surface correspondence and motion computation from a pair of range images. Comput. Vis. Image Underst. 63(2), 232–250 (1996)

    Article  Google Scholar 

  24. 24.

    Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. Image Vis. Comput. 25(5), 578–596 (2007)

    Article  Google Scholar 

  25. 25.

    Skotheim, Ø., Schumann-Olsen, H., et. al.: ZividLabs. Zivid 3d camera

  26. 26.

    Sveier, A., Kleppe, A.L., Tingelstad, L., Egeland, O.: Object detection in point clouds using conformal geometric algebra. Adv. Appl. Clifford Algebras 27(3), 1–16 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6313 LNCS(PART 3), pp. 356–369 (2010)

  28. 28.

    Yang, J., Li, H., Jia, Y.: Go-ICP: Solving 3D registration efficiently and globally optimally. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1457–1464 (2013)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam Leon Kleppe.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kleppe, A.L., Egeland, O. A Curvature-Based Descriptor for Point Cloud Alignment Using Conformal Geometric Algebra. Adv. Appl. Clifford Algebras 28, 50 (2018). https://doi.org/10.1007/s00006-018-0864-9

Download citation

Keywords

  • Keypoint descriptor
  • Conformal geometric algebra
  • Initial alignment
  • Point clouds