Abstract
In this paper, we consider several parameterizations of rigid transformations using motors in 3-D conformal geometric algebra. In particular, we present parameterizations based on the exponential, outer exponential, and Cayley maps of bivectors, as well as a map based on a first-order approximation of the exponential followed by orthogonal projection onto the group manifold. We relate these parameterizations to the matrix representations of rigid transformations in the 3-D special Euclidean group. Moreover, we present how these maps can be used to form retraction maps for use in manifold optimization; retractions being approximations of the exponential map that preserve the convergence properties of the optimization method while being less computationally expensive, and, for the presented maps, also easier to implement.
References
Absil, P.-A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)
Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)
Baker, C.G.: Riemannian Manifold Trust-Region Methods with Applications to Eigenproblems. PhD thesis, College of Arts and Sciences, Florida State University (2008)
Bayro-Corrochano, E.: Motor algebra approach for visually guided robotics. Pattern Recognit. 35(1), 279–294 (2002)
Bayro-Corrochano, E., Zhang, Y.: The motor extended kalman filter: a geometric approach for rigid motion estimation. J. Math. Imaging Vis. 13(3), 205–228 (2000)
Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)
Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 192(3), 421–438 (2003)
Chasles, M.: Notes sur les Propriétés Générales du Système de Deux Corps Semblades entr’eux. Bulletin de Sciences Mathematiques, Astronomiques Physiques et Chimiques, pp. 321–326 (1830)
Clifford, W.K.: Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 4, 361–395 (1873)
Davidson, J.K., Hunt, K.H.: Robots and Screw Theory: Applications of Kinematics and Statics to Robotics. Oxford University Press Inc., New York (2004)
Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco (2007)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer series in computational mathematics. Springer, Berlin (2006)
Helmstetter, J.: Exponentials of bivectors and their symplectic counterparts. Adv. Appl. Clifford Algebras 18(3), 689–698 (2008)
Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)
Li, H.: Parameterization of 3D Conformal Transformations in Conformal Geometric Algebra. Springer, London, pp. 71–90 (2010)
Lounesto, P.: Cayley transform, outer exponential and spinor norm. In: Proceedings of the Winter School “Geometry and Physics”. Circolo Matematico di Palermo, pp. 191–198 (1987)
Lounesto, P.: Clifford Algebras and Spinors. London Mathematical Society lecture note series, 2nd edn. Cambridge University Press, Cambridge (2001)
Ma, Y., Košecká, J., Sastry, S.: Optimization criteria and geometric algorithms for motion and structure estimation. Int. J. Comput. Vis. 44(3), 219–249 (2001)
McCarthy, J.M., Soh, G.S.: Geometric design of linkages. Springer, New York, NY (2011)
Riesz, M.: Clifford Numbers and Spinors (Chapters I–IV). Springer, Dordrecht, pp. 1–196 (1993)
Sarkis, M., Diepold, K.: Camera–Pose estimation via projective Newton optimization on the manifold. IEEE Trans. Image Process. 21(4), 1729–1741 (2012)
Selig, J.M.: Cayley maps for se(3). In: 12th International Federation for the Promotion of Mechanism and Machine Science World Congress, p. 6 (2007)
Selig, J.M.: Exponential and Cayley maps for dual quaternions. Adv. Appl. Clifford Algebras 20(3), 923–936 (2010)
Smith, S.T.: Geometric Optimization Methods for Adaptive Filtering. PhD thesis, Harvard University (1993)
Tingelstad, L., Egeland, O.: Automatic multivector differentiation and optimization. Adv. Appl. Clifford Algebras 27(1), 707–731 (2017)
Tingelstad, L., Egeland, O.: Motor estimation using heterogeneous sets of objects in conformal geometric algebra. Adv. Appl. Clifford Algebras 27(3), 2035–2049 (2017)
Townsend, J., Koep, N., Weichwald, S.: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation. J. Mach. Learn. Res. 17(137), 1–5 (2016)
Valkenburg, R., Dorst, L.: Estimating Motors from a Variety of Geometric Data in 3D Conformal Geometric Algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice, pp. 25–45. Springer, London (2011)
Vandereycken, B.: Riemannian and multilevel optimization for rank-constrained matrix problems. PhD thesis, Department of Computer Science, KU Leuven (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially funded by the Norwegian Research Council, 237896 SFI Offshore Mechatronics.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Tingelstad, L., Egeland, O. Motor Parameterization. Adv. Appl. Clifford Algebras 28, 34 (2018). https://doi.org/10.1007/s00006-018-0850-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00006-018-0850-2
Keywords
- Motion parameterization
- Exponential map
- Outer exponential map
- Cayley map
- Retractions
Mathematics Subject Classification
- Primary 99Z99
- Secondary 00A00