Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Advances in Applied Clifford Algebras
  3. Article
Motor Parameterization
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Notes on Planar Inverse Kinematics Based on Geometric Algebra

04 July 2018

Jaroslav Hrdina, Aleš Návrat & Petr Vašík

Learning position and orientation dynamics from demonstrations via contraction analysis

02 May 2018

Harish chaandar Ravichandar & Ashwin Dani

New Applications of Clifford’s Geometric Algebra

14 February 2022

Stephane Breuils, Kanta Tachibana & Eckhard Hitzer

Projective View on Motion Groups I: Kinematics and Relativity

09 May 2019

Danail S. Brezov

Turning machines: a simple algorithmic model for molecular robotics

22 February 2022

Irina Kostitsyna, Cai Wood & Damien Woods

The Study Variety of Conformal Kinematics

18 July 2022

Bahar Kalkan, Zijia Li, … Johannes Siegele

Objects Changing the Spatial Orientation of a Solid Body by Using Mobile Mass

01 July 2020

A. M. Shmatkov

Explicit Solutions for a Series of Optimization Problems with 2-Dimensional Control via Convex Trigonometry

01 September 2020

A. A. Ardentov, L. V. Lokutsievskiy & Yu. L. Sachkov

Force sharing and force generation by two teams of elastically coupled molecular motors

24 January 2019

Mehmet Can Uçar & Reinhard Lipowsky

Download PDF

Associated Content

Part of a collection:

T.C. : Geometric Algebra for Computing, Graphics and Engineering with Yu Zhaoyuan, Guest E-i-C

  • Open Access
  • Published: 17 March 2018

Motor Parameterization

  • Lars Tingelstad  ORCID: orcid.org/0000-0002-3429-72151 &
  • Olav Egeland1 

Advances in Applied Clifford Algebras volume 28, Article number: 34 (2018) Cite this article

  • 639 Accesses

  • 3 Citations

  • Metrics details

Abstract

In this paper, we consider several parameterizations of rigid transformations using motors in 3-D conformal geometric algebra. In particular, we present parameterizations based on the exponential, outer exponential, and Cayley maps of bivectors, as well as a map based on a first-order approximation of the exponential followed by orthogonal projection onto the group manifold. We relate these parameterizations to the matrix representations of rigid transformations in the 3-D special Euclidean group. Moreover, we present how these maps can be used to form retraction maps for use in manifold optimization; retractions being approximations of the exponential map that preserve the convergence properties of the optimization method while being less computationally expensive, and, for the presented maps, also easier to implement.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Absil, P.-A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  3. Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, C.G.: Riemannian Manifold Trust-Region Methods with Applications to Eigenproblems. PhD thesis, College of Arts and Sciences, Florida State University (2008)

  5. Bayro-Corrochano, E.: Motor algebra approach for visually guided robotics. Pattern Recognit. 35(1), 279–294 (2002)

    Article  MATH  Google Scholar 

  6. Bayro-Corrochano, E., Zhang, Y.: The motor extended kalman filter: a geometric approach for rigid motion estimation. J. Math. Imaging Vis. 13(3), 205–228 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)

    MATH  Google Scholar 

  8. Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 192(3), 421–438 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chasles, M.: Notes sur les Propriétés Générales du Système de Deux Corps Semblades entr’eux. Bulletin de Sciences Mathematiques, Astronomiques Physiques et Chimiques, pp. 321–326 (1830)

  10. Clifford, W.K.: Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 4, 361–395 (1873)

    MathSciNet  Google Scholar 

  11. Davidson, J.K., Hunt, K.H.: Robots and Screw Theory: Applications of Kinematics and Statics to Robotics. Oxford University Press Inc., New York (2004)

    MATH  Google Scholar 

  12. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  13. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco (2007)

    Google Scholar 

  14. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer series in computational mathematics. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Helmstetter, J.: Exponentials of bivectors and their symplectic counterparts. Adv. Appl. Clifford Algebras 18(3), 689–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, H.: Parameterization of 3D Conformal Transformations in Conformal Geometric Algebra. Springer, London, pp. 71–90 (2010)

  18. Lounesto, P.: Cayley transform, outer exponential and spinor norm. In: Proceedings of the Winter School “Geometry and Physics”. Circolo Matematico di Palermo, pp. 191–198 (1987)

  19. Lounesto, P.: Clifford Algebras and Spinors. London Mathematical Society lecture note series, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  20. Ma, Y., Košecká, J., Sastry, S.: Optimization criteria and geometric algorithms for motion and structure estimation. Int. J. Comput. Vis. 44(3), 219–249 (2001)

    Article  MATH  Google Scholar 

  21. McCarthy, J.M., Soh, G.S.: Geometric design of linkages. Springer, New York, NY (2011)

  22. Riesz, M.: Clifford Numbers and Spinors (Chapters I–IV). Springer, Dordrecht, pp. 1–196 (1993)

  23. Sarkis, M., Diepold, K.: Camera–Pose estimation via projective Newton optimization on the manifold. IEEE Trans. Image Process. 21(4), 1729–1741 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Selig, J.M.: Cayley maps for se(3). In: 12th International Federation for the Promotion of Mechanism and Machine Science World Congress, p. 6 (2007)

  25. Selig, J.M.: Exponential and Cayley maps for dual quaternions. Adv. Appl. Clifford Algebras 20(3), 923–936 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smith, S.T.: Geometric Optimization Methods for Adaptive Filtering. PhD thesis, Harvard University (1993)

  27. Tingelstad, L., Egeland, O.: Automatic multivector differentiation and optimization. Adv. Appl. Clifford Algebras 27(1), 707–731 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tingelstad, L., Egeland, O.: Motor estimation using heterogeneous sets of objects in conformal geometric algebra. Adv. Appl. Clifford Algebras 27(3), 2035–2049 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Townsend, J., Koep, N., Weichwald, S.: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation. J. Mach. Learn. Res. 17(137), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Valkenburg, R., Dorst, L.: Estimating Motors from a Variety of Geometric Data in 3D Conformal Geometric Algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice, pp. 25–45. Springer, London (2011)

    Chapter  Google Scholar 

  31. Vandereycken, B.: Riemannian and multilevel optimization for rank-constrained matrix problems. PhD thesis, Department of Computer Science, KU Leuven (2010)

Download references

Author information

Authors and Affiliations

  1. Department of Mechanical and Industrial Engineering, Faculty of Engineering, NTNU, Norwegian University of Science and Technology, 7491, Trondheim, Norway

    Lars Tingelstad & Olav Egeland

Authors
  1. Lars Tingelstad
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Olav Egeland
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lars Tingelstad.

Additional information

This work was partially funded by the Norwegian Research Council, 237896 SFI Offshore Mechatronics.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tingelstad, L., Egeland, O. Motor Parameterization. Adv. Appl. Clifford Algebras 28, 34 (2018). https://doi.org/10.1007/s00006-018-0850-2

Download citation

  • Received: 31 December 2017

  • Accepted: 03 March 2018

  • Published: 17 March 2018

  • DOI: https://doi.org/10.1007/s00006-018-0850-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Motion parameterization
  • Exponential map
  • Outer exponential map
  • Cayley map
  • Retractions

Mathematics Subject Classification

  • Primary 99Z99
  • Secondary 00A00
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

T.C. : Geometric Algebra for Computing, Graphics and Engineering with Yu Zhaoyuan, Guest E-i-C

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.