Division Algebras, Clifford Algebras, Periodicity

  • Geoffrey DixonEmail author
Part of the following topical collections:
  1. Homage to Prof. W.A. Rodrigues Jr


The dimensions 2, 8 and 24 play significant roles in lattice theory. In Clifford algebra theory there are well-known periodicities of the first two of these dimensions. Using novel representations of the purely Euclidean Clifford algebras over all four of the division algebras, \({\mathbf{R}}\), \({\mathbf{C}}\), \({\mathbf{H}}\), and \({\mathbf{O}}\), a door is opened to a Clifford algebra periodicity of order 24 as well.


  1. 1.
    Cohn, H.: A conceptual breakthrough in sphere packing. Notices of the American Mathematical Society 64(02) November 2016Google Scholar
  2. 2.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 2nd edn. Springer, Berlin (1991)zbMATHGoogle Scholar
  3. 3.
    Dixon, G.M.: Octonions: invariant Leech lattice exposed. arXiv:hep-th/9506080
  4. 4.
    Dixon, G.M.: Division Algebras: Octonions, Quaternions Complex Numbers and the Algebraic Design of Physics. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dixon, G.M.: Division Algebras, Lattices, Physics. Windmill Tilting, CreateSpace (2011)Google Scholar
  6. 6.
    Dixon, G.M.: Seeable matter; unseeable antimatter. Comment. Math. Univ. Carolin. 55(3), 381–386 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
  8. 8.
    Porteous I.R., Topological Geometry, 2nd Edn. Cambridge (1981)Google Scholar
  9. 9.
  10. 10.
    Viazovska, M.S.: The sphere packing problem in dimension 8. Preprint (2016). arXiv:1603.04246)
  11. 11.
    Wilson, R.A.: Octonions and the Leech lattice. J. Algebra 322(6), 2186–2190 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DurhamUK

Personalised recommendations