Advertisement

Non-anti-hermitian Quaternionic Quantum Mechanics

Article
  • 46 Downloads
Part of the following topical collections:
  1. Homage to Prof. W.A. Rodrigues Jr

Abstract

The breakdown of Ehrenfest’s theorem imposes serious limitations on quaternionic quantum mechanics (QQM). In order to determine the conditions in which the theorem is valid, we examined the conservation of the probability density, the expectation value and the classical limit for a non-anti-hermitian formulation of QQM. The results also indicated that the non-anti-hermitian quaternionic theory is related to non-hermitian quantum mechanics, and thus the physical problems described with both of the theories should be related.

References

  1. 1.
    Adler, S.L.: Quaternionic quantum field theory. Commun. Math. Phys. 104, 611 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adler, S.L.: Quaternionic quantum field theory. In: Teitelboim, C. (ed.) Quantum Mechanics of Fundamental Systems 1. Springer, New York (1988)Google Scholar
  3. 3.
    Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  4. 4.
    Alpay, D., Colombo, F., Kimsey, D.: The spectral theorem for quaternionic unbounded normal operators based on the \(S\)-spectrum. J. Math. Phys. 57, 023503 (2016). arXiv:1409.7010 [math.SP]
  5. 5.
    Atiyah, M.F.: Geometry of Yang–Mills fields. Publications of the Scuola Normale Superiore, Pisa (1979)MATHGoogle Scholar
  6. 6.
    Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007). arXiv:hep-th/0703096 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Blasi, A., Scolarici, G., Solombrino, L.: Quasianti-hermiticity and quaternionic quantum systems. Czech. J. Phys. 54, 1055–1059 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Blasi, A., Scolarici, G., Solombrino, L.: Alternative descriptions in quaternionic quantum mechanics. J. Math. Phys. 46, 042104 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Davies, A.J.: Quaternionic Dirac equation. Phys. Rev. D 41, 2628–2630 (1990)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Davies, A.J., McKellar, B.H.J.: Nonrelativistic quaternionic quantum mechanics in one dimension. Phys. Rev. A 40, 4209–4214 (1989)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Davies, A.J., McKellar, B.H.J.: Observability of quaternionic quantum mechanics. Phys. Rev. A 46, 3671–3675 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    De Leo, S., Ducati, G.: Quaternionic differential operators. J. Math. Phys. 42, 2236–2265 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    De Leo, S., Ducati, G.: Quaternionic potentials in non-relativistic quantum mechanics. J. Phys. A35, 5411–5426 (2002)ADSMathSciNetMATHGoogle Scholar
  14. 14.
    De Leo, S., Ducati, G.: Quaternionic bound states. J. Phys. A35, 3443–3454 (2005)MathSciNetMATHGoogle Scholar
  15. 15.
    De Leo, S., Ducati, G.: Quaternionic wave packets. J. Math. Phys. 48, 052111-10 (2007)ADSMathSciNetMATHGoogle Scholar
  16. 16.
    De Leo, S., Giardino, S.: Dirac solutions for quaternionic potentials. J. Math. Phys. 55, 022301-10 (2014). arXiv:1311.6673 [math-ph]
  17. 17.
    De Leo, S., Ducati, G., Giardino, S.: Quaternionic Dirac scattering. J. Phys. Math. 6, 1000130 (2015). arXiv:1505.01807 [math-ph]
  18. 18.
    Giardino, S.: Quaternionic particle in a relativistic box. Found. Phys. 46(4), 473–483 (2016). arXiv:1504.00643 [quant-ph]
  19. 19.
    Giardino, S.: Quaternionic Aharonov–Bohm effect. Adv. Appl. Clifford Algebras 27, 2445–2456 (2017)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Giardino, S., Teotonio-Sobrinho, P.: A non-associative quaternion scalar field theory. Modern Phys. Lett. A 28(35), 1350163 (2013). arXiv:1211.5049 [math-ph]
  21. 21.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Jones-Smith, K., Mathur, H.: Non-Hermitian quantum Hamiltonians with PT symmetry. Phys. Rev. A 82, 042101 (2010)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Jones-Smith, K., Mathur, H.: Relativistic non-Hermitian quantum mechanics. Phys. Rev. D 89, 125014 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in PT-symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Moiseyev, N.: Non-hermitian Quantum Mechanics. Cambridge University Press, Cambridge (2011)CrossRefMATHGoogle Scholar
  26. 26.
    Mostafazadeh, A.: PseudoHermiticity versus PT-symmetry. The necessary condition for the reality of the spectrum. J. Math. Phys. 43, 205–214 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Procopio, L.M., Rozema, L.A., Dakić, B., Walther, P.: Comment on Adler’s “Does the Peres experiment using photons test for hyper-complex (quaternionic) quantum theories?” (2016). arXiv:1607.01648 [quant-ph]
  28. 28.
    Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)CrossRefGoogle Scholar
  30. 30.
    Scolarici, G., Solombrino, L.: On the pseudo-Hermitian nondiagonalizable Hamiltonians. J. Math. Phys. 44, 4450–4459 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Scolarici, G., Solombrino, L.: Alternative descriptions and bipartite compound quantum systems. J. Phys. A 42, 055303 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sobhani, H., Hassanabadi, H.: Scattering in quantum mechanics under quaternionic Dirac delta potential. Can. J. Phys. 94, 262–266 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Solombrino, L.: Weak pseudo-Hermiticity and antilinear commutant. J. Math. Phys. 43, 5439 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Vaz, J., da Rocha, R.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, Oxford (2016)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Matematica e EstatisticaUniversidade Federal do Rio Grande do Sul Avenida Bento Goncalves 9500Porto AlegreBrazil

Personalised recommendations