Skip to main content
Log in

A New Polar Representation for Split and Dual Split Quaternions

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We present a new different polar representation of split and dual split quaternions inspired by the Cayley–Dickson representation. In this new polar form representation, a split quaternion is represented by a pair of complex numbers, and a dual split quaternion is represented by a pair of dual complex numbers as in the Cayley–Dickson form. Here, in a split quaternion these two complex numbers are a complex modulus and a complex argument while in a dual split quaternion two dual complex numbers are a dual complex modulus and a dual complex argument. The modulus and argument are calculated from an arbitrary split quaternion in Cayley–Dickson form. Also, the dual modulus and dual argument are calculated from an arbitrary dual split quaternion in Cayley–Dickson form. By the help of polar representation for a dual split quaternion, we show that a Lorentzian screw operator can be written as product of two Lorentzian screw operators. One of these operators is in the two-dimensional space produced by 1 and i vectors. The other is in the three-dimensional space generated by 1, j and k vectors. Thus, an operator in a four-dimensional space is expressed by means of two operators in two and three-dimensional spaces. Here, vector 1 is in the intersection of these spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akyar, B.: Dual quaternions in spatial kinematics in an algebraic sense. Turk. J. Math. 32, 373–391 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Altmann, S.L.: Rotations, Quaternions, and Double Groups. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  3. Bayro-Corrochano, E., Daniilidis, K., Sommer, G.: Motor algebra for 3D kinematics: the case of the hand-eye calibration. J. Math. Imag. Vis. 13, 79–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cho, E.: De Moivre’s formula for quaternions. Appl. Math. Lett. 11(6), 33–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cho, E.: Euler’s formula and De Moivre’s formula for quaternions. Missouri J. Math. Sci. 11(2), 80–83 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Ghadami, R., Rahebi, J., Yaylı, Y.: Spline split quaternion interpolation in Minkowski space. Adv. Appl. Cliff. Algebr. 23(4), 849–862 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hanson, A.J.: Visualizing Quaternion. Elsevier, Morgan-Kaufman (2005)

    Book  Google Scholar 

  8. Hitzer, E.: Introduction to Clifford’s geometric algebra. SICE J. Contr. Meas. Syst. Integr. 4(1), 1–11 (2011)

    Article  MathSciNet  Google Scholar 

  9. Hitzer, E., Nitta, T., Kuroe, Y.: Applications of Clifford’s geometric algebra. Adv. Appl. Cliff. Algebr. 23(2), 377–404 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Inoguchi, J.: Timelike surfaces of constant mean curvature in Minkowski 3-space. Tokyo J. Math. 21(1), 141–152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kula, L., Yaylı, Y.: Dual Split quaternions and screw motion in Minkowski 3-space. Iran. J. Sci. Technol. Trans. A 30(A3), 1–14 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Kula, L., Yaylı, Y.: Split quaternions and rotations in semi-euclidean space \( \mathbb{R} _{2}^{4}\). J. Korean Math. Soc. 44(6), 1313–1327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  14. Mladenova, C.D.: Robotic problems over a configurational manifold of vector parameters and dual vector parameters. J. Intell. Robot. Syst. 11(1), 117–133 (1994)

    Article  MATH  Google Scholar 

  15. O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983)

    MATH  Google Scholar 

  16. Özdemir, M.: Roots of a split quaternion. Appl. Math. Lett. 22, 258–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Özdemir, M., Ergin, A.A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 56, 322–336 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sangwine, S.J., Bihan, N.L.: Quaternion polar representation with a complex modulus and complex argument inspired by the Cayley-Dickson form. Adv. Appl. Clifford Alg. 20(1), 111–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ward, J.P.: Quaternions and Cayley numbers: algebra and applications. In: Mathematics and Its Applications, vol. 403. Kluwer, Dordrecht (1997). (ISBN 0792345134)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Atasoy.

Additional information

Communicated by G. Stacey Staples

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atasoy, A., Ata, E., Yayli, Y. et al. A New Polar Representation for Split and Dual Split Quaternions. Adv. Appl. Clifford Algebras 27, 2307–2319 (2017). https://doi.org/10.1007/s00006-017-0797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0797-8

Keywords

Mathematics Subject Classification

Navigation