Generalizations of Schwarzschild and (Anti) de Sitter Metrics in Clifford Spaces

Abstract

After a very brief introduction to generalized gravity in Clifford spaces (C-spaces), generalized metric solutions to the C-space gravitational field equations are found, and inspired from the (Anti) de Sitter metric solutions to Einstein’s field equations with a cosmological constant in ordinary spacetimes. C-space analogs of static spherically symmetric metrics solutions are constructed. Concluding remarks are devoted to a thorough discussion about Areal metrics, Kawaguchi–Finsler Geometry, Strings, and plausible novel physical implications of C-space Relativity theory.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Castro, C.: Extended lorentz transformations in Clifford space relativity theory. Adv. Appl. Clifford Algebras 25(3), 553–567 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Castro, C.: The cosmological constant from the extended theory of gravitation in Clifford spaces. Adv. Appl. Clifford Algebras 26(3), 913–931 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Castro, C., Pavsic, M.: Higher derivative gravity and torsion from the geometry of C-spaces. Phys. Lett. B 559, 74 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Castro, C., Pavsic, M.: On Clifford algebras of spacetime and the Conformal Group. Int. J. Theor. Phys. 42, 1693 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Castro, C., Pavsic, M.: The extended relativity theory in Clifford spaces. Progress Phys. 1, 31 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  6. 6.

    Hestenes, D.: Spacetime Algebra. Gordon and Breach, New York (1996)

    Google Scholar 

  7. 7.

    Hestenes, D., Sobcyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel Publishing Company, Dordrecht (1984)

    Google Scholar 

  8. 8.

    Ho, P.-M., Inami, T.: Geometry of Area Without Length. arXiv:1508.05569

  9. 9.

    Kawaguchi, A.: On areal spaces I. Metric tensors in n-dimensional spaces based on the notion of two-dimensional area. Tensor (New Series) 1, 14–45 (1950)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Kawaguchi, A.: Theory of areal spaces. Mat. Rend. Appl. 12(5), 373–386 (1953)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry vols. 1, 2 (New ed.), Wiley-Interscience (1996). https://en.wikipedia.org/wiki/Torsion$_-$tensor

  12. 12.

    Ootsuka, T., Yahagi, R., Ishida, M., Tanaka, E.: Energy-momentum conservation laws in Finsler/Kawaguchi Lagrangian formulation. arXiv:1406.2147

  13. 13.

    Pavsic, M.: Spin gauge theory of gravity in Clifford space: a realization of Kaluza–Klein theory in 4-dimensional spacetime. Int. J. Mod. Phys. A 21, 5905 (2006)

    ADS  Article  MATH  Google Scholar 

  14. 14.

    Punzi, R., Schuller, F., Wolfarth, M.: Area metric gravity and accelerating cosmology. arXiv:hep-th/0612141

  15. 15.

    Schuller, F.P., Witte, C., Wohlfarth, M.N.R.: Causal structure and algebraic classification of area metric spacetimes in four dimensions. Ann. Phys. 325, 1853 (2010)

    ADS  Article  MATH  Google Scholar 

  16. 16.

    Schuller, F.P., Wohlfarth, M.N.R.: Geometry of manifolds with area metric: multimetric backgrounds. Nucl. Phys. B 747, 398 (2006)

    ADS  Article  MATH  Google Scholar 

  17. 17.

    Yahagi, R., Sugamoto, A.: Application of Kawaguchi Lagrangian formulation to string theory. arXiv:1508.02168

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos Castro.

Additional information

Dedicated to the loving memory of Don Guillermo Zambrano Lozano, a maverick and visionary entrepreneur from Monterrey, Mexico.

Communicated by Eckhard Hitzer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castro, C. Generalizations of Schwarzschild and (Anti) de Sitter Metrics in Clifford Spaces. Adv. Appl. Clifford Algebras 27, 2393–2405 (2017). https://doi.org/10.1007/s00006-017-0763-5

Download citation

Keywords

  • Extended relativity in Clifford spaces
  • Gravity
  • Strings
  • Area metrics
  • Kawaguchi–Finsler geometry