Advances in Applied Clifford Algebras

, Volume 27, Issue 3, pp 2393–2405 | Cite as

Generalizations of Schwarzschild and (Anti) de Sitter Metrics in Clifford Spaces

  • Carlos CastroEmail author


After a very brief introduction to generalized gravity in Clifford spaces (C-spaces), generalized metric solutions to the C-space gravitational field equations are found, and inspired from the (Anti) de Sitter metric solutions to Einstein’s field equations with a cosmological constant in ordinary spacetimes. C-space analogs of static spherically symmetric metrics solutions are constructed. Concluding remarks are devoted to a thorough discussion about Areal metrics, Kawaguchi–Finsler Geometry, Strings, and plausible novel physical implications of C-space Relativity theory.


Extended relativity in Clifford spaces Gravity Strings Area metrics Kawaguchi–Finsler geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castro, C.: Extended lorentz transformations in Clifford space relativity theory. Adv. Appl. Clifford Algebras 25(3), 553–567 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Castro, C.: The cosmological constant from the extended theory of gravitation in Clifford spaces. Adv. Appl. Clifford Algebras 26(3), 913–931 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Castro, C., Pavsic, M.: Higher derivative gravity and torsion from the geometry of C-spaces. Phys. Lett. B 559, 74 (2003)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Castro, C., Pavsic, M.: On Clifford algebras of spacetime and the Conformal Group. Int. J. Theor. Phys. 42, 1693 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Castro, C., Pavsic, M.: The extended relativity theory in Clifford spaces. Progress Phys. 1, 31 (2005)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Hestenes, D.: Spacetime Algebra. Gordon and Breach, New York (1996)zbMATHGoogle Scholar
  7. 7.
    Hestenes, D., Sobcyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel Publishing Company, Dordrecht (1984)CrossRefGoogle Scholar
  8. 8.
    Ho, P.-M., Inami, T.: Geometry of Area Without Length. arXiv:1508.05569
  9. 9.
    Kawaguchi, A.: On areal spaces I. Metric tensors in n-dimensional spaces based on the notion of two-dimensional area. Tensor (New Series) 1, 14–45 (1950)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kawaguchi, A.: Theory of areal spaces. Mat. Rend. Appl. 12(5), 373–386 (1953)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry vols. 1, 2 (New ed.), Wiley-Interscience (1996).$_-$tensor
  12. 12.
    Ootsuka, T., Yahagi, R., Ishida, M., Tanaka, E.: Energy-momentum conservation laws in Finsler/Kawaguchi Lagrangian formulation. arXiv:1406.2147
  13. 13.
    Pavsic, M.: Spin gauge theory of gravity in Clifford space: a realization of Kaluza–Klein theory in 4-dimensional spacetime. Int. J. Mod. Phys. A 21, 5905 (2006)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Punzi, R., Schuller, F., Wolfarth, M.: Area metric gravity and accelerating cosmology. arXiv:hep-th/0612141
  15. 15.
    Schuller, F.P., Witte, C., Wohlfarth, M.N.R.: Causal structure and algebraic classification of area metric spacetimes in four dimensions. Ann. Phys. 325, 1853 (2010)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Schuller, F.P., Wohlfarth, M.N.R.: Geometry of manifolds with area metric: multimetric backgrounds. Nucl. Phys. B 747, 398 (2006)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Yahagi, R., Sugamoto, A.: Application of Kawaguchi Lagrangian formulation to string theory. arXiv:1508.02168

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Quantum Gravity ResearchTopangaUSA
  2. 2.Center for Theoretical Studies of Physical SystemsClark Atlanta UniversityAtlantaUSA

Personalised recommendations