Skip to main content

Object Detection in Point Clouds Using Conformal Geometric Algebra

Abstract

This paper presents an approach for detecting primitive geometric objects in point clouds captured from 3D cameras. Primitive objects are objects that are well defined with parameters and mathematical relations, such as lines, spheres and ellipsoids. RANSAC, a robust parameter estimator that classifies and neglects outliers, is used for object detection. The primitives considered are modeled, filtered and fitted using the conformal model of geometric algebra. Methods for detecting planes, spheres and cylinders are suggested. Least squares fitting of spheres and planes to point data are done analytically with conformal geometric algebra, while a cylinder is fitted by defining a nonlinear cost function which is optimized using a nonlinear least squares solver. Furthermore, the suggested object detection scheme is combined with an octree sampling strategy that results in fast detection of multiple primitive objects in point clouds.

References

  1. 1.

    Agarwal, S., Mierle, K., et al.: Ceres Solver. http://ceres-solver.org/. Accessed Sept 2016

  2. 2.

    Bazazian, D., Casas, J.R., Ruiz-Hidalgo, J.: Fast and robust edge extraction in unorganized point clouds. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE, New York (2015)

  3. 3.

    Bradski, G.: OpenCV (2000)

  4. 4.

    Colapinto, P.: Versor: spatial computing with conformal geometric algebra. Master’s thesis. University of California at Santa Barbara (2011). http://versor.mat.ucsb.edu

  5. 5.

    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco (2009)

    Google Scholar 

  6. 6.

    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Hildenbrand, D.: Foundations of Geometric Algebra Computing. Springer, New York (2013)

  8. 8.

    Hildenbrand, D.: Foundations of geometric algebra computing. In: Fitting of Planes or Spheres to Sets of Points, Least-Squares Approach, chap. 5.3 (2013)

  9. 9.

    Hildenbrand, D.,  Hitzer, E.: Analysis of point clouds: using conformal geometric algebra. In: Proceedings of Third International Conference on Computer Graphics Theory and Applications, vol. 5, pp. 1–6 (2008)

  10. 10.

    Merigot, Q., Ovsjanikov, M., Guibas, L.J.: Voronoi-based curvature and feature estimation from point clouds. IEEE Trans. Vis. Comput. Graph. 17(6), 743–756 (2011)

    Article  Google Scholar 

  11. 11.

    Payne, A., Daniel, A., Mehta, A., Thompson, B.,  Bamji, C.S., Snow, D.,  Oshima, H., Prather, L., Fenton, M., Kordus,L.,  et al.: 7.6 a 512\(\times \) 424 CMOS 3D time-of-flight image sensor with multi-frequency photo-demodulation up to 130 MHz and 2 GS/s ADC. In: 2014 IEEE International on Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 134–135. IEEE, New York (2014)

  12. 12.

    Richard, P.E.H., Duda, O.: Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 15(1), 11 – 15 (1972)

  13. 13.

    Ritter, M., Benger, W., Cosenza, B., Pullman, K., Moritsch, H.,  Leimer, W.: Visual data mining using the point distribution tensor. In: IARIS Workshop on Computer Vision and Computer Graphics-VisGra (2012)

  14. 14.

    Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE, New York (2011)

  15. 15.

    Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 26(2), 214–226 (2007)

    Article  Google Scholar 

  16. 16.

    Sveier, A.: Video Demonstration and Source Code for Experiments Conducted in Object Detection in Point Clouds Using CGA (2016). doi:10.5281/zenodo.158974

  17. 17.

    Tingelstad, L.: GAME—Geometric Algebra Multivector Estimation (2016). http://github.com/tingelst/game/

  18. 18.

    Tingelstad, L., Egeland, O.: Automatic multivector differentiation and optimization. In: Advances in Applied Clifford Algebras, pp. 1–15 (2016)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aksel Sveier.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sveier, A., Kleppe, A.L., Tingelstad, L. et al. Object Detection in Point Clouds Using Conformal Geometric Algebra. Adv. Appl. Clifford Algebras 27, 1961–1976 (2017). https://doi.org/10.1007/s00006-017-0759-1

Download citation