Skip to main content
Log in

Fock Representations and Deformation Quantization of Kähler Manifolds

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The goal of this paper is to construct the Fock representation of noncommutative Kähler manifolds. Noncommutative Kähler manifolds studied here are constructed by deformation quantization with separation of variables, which was given by Karabegov. The algebra of the noncommutative Kähler manifolds contains the Heisenberg-like algebras. Local complex coordinates and partial derivatives of a Kähler potential satisfy the commutation relations between creation and annihilation operators. A Fock space is constituted by states obtained by applying creation operators on a vacuum which is annihilated by all annihilation operators. The algebras on noncommutative Kähler manifolds are represented as those of linear operators acting on the Fock space. In representations studied here, creation operators and annihilation operators are not Hermitian conjugates of one other, in general. Therefore, the basis vectors of the Fock space are not the Hermitian conjugates of those of the dual vector space. In this sense, we call the representation the twisted Fock representation. In this presentation, we construct the twisted Fock representations for arbitrary noncommutative Kähler manifolds given by deformation quantization with separation of variables, and give a dictionary to translate between the twisted Fock representations and functions on noncommutative Kähler manifolds concretely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexanian, G., Pinzul, A., Stern, A.: Generalized coherent state approach to star products and applications to the fuzzy sphere. Nucl. Phys. B 600, 531 (2001). arXiv:hep-th/0010187

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alexanian, G., Balachandran, A.P., Immirzi, G., Ydri, B.: Fuzzy \(CP^2\). J. Geom. Phys. 42, 28 (2002). arXiv:hep-th/0103023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Balachandran, A.P., Dolan, B.P., Lee, J.-H., Martin, X., O’Connor, D.: Fuzzy complex projective spaces and their star products. J. Geom. Phys. 43, 184 (2002). arXiv:hep-th/0107099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Banks, T., Fischler, W., Shenker, S.H., Susskind, L.: Phys. Rev. D 55, 5112 (1997). doi:10.1103/PhysRevD.55.5112. arXiv:hep-th/9610043

    Article  ADS  MathSciNet  Google Scholar 

  5. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. 1. Deformations of symplectic structures. Ann. Phys. 111, 61 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. 2. Physical applications. Ann. Phys. 111, 111 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Berezin, F.A.: Quantization. Math. USSR-Izv. 8, 1109 (1974)

    Article  MATH  Google Scholar 

  8. Berezin, F.A., Quantization. In: *Karpacz, : Proceedings, Acta Universitatis Wratislaviensis No. 368, Vol. 2*. Wroclaw 1976, 41–111 (1975)

  9. Bieliavsky, P., Detournay, S., Spindel, P.: The deformation quantizations of the hyperbolic plane. Commun. Math. Phys. 289, 529 (2009). arXiv:0806.4741 [math-ph]

  10. Brouder, C., Fauser, B., Frabetti, A., Oeckl, R.: Quantum field theory and Hopf algebra cohomology. J. Phys. A 37, 5895 (2004). doi:10.1088/0305-4470/37/22/014. arXiv:hep-th/0311253

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kahler manifolds, II. Am. Math. Soc. Trans. 337, 73 (1993)

    MATH  Google Scholar 

  12. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kahler manifolds, IV. Lett. Math. Phys 34, 159 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Carow-Watamura, U., Steinacker, H., Watamura, S.: Monopole bundles over fuzzy complex projective spaces. J. Geom. Phys. 54, 373 (2005). arXiv:hep-th/0404130

  14. De Wilde, M., Lecomte, P.B.A.: Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7, 487 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Esposito, C., Schnitzer, J., Waldmann, S.: An universal construction of universal deformation formulas, drinfel’d twists and their positivity. arXiv:1608.00412

  16. Fedosov, B.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40, 213 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hara, K., Sako, A.: Noncommutative deformations of locally symmetric Kähler manifolds. arXiv:1608.08146

  18. Henselder, P., Hirshfeld, A.C., Spernat, T.: Star products and geometric algebra. Ann. Phys. 317, 107 (2005). doi:10.1016/j.aop.2004.09.020. arXiv:math-ph/0409073

  19. Hirshfeld, A.C., Henselder, P.: Star products and perturbative quantum field theory. Ann. Phys. 298, 382 (2002). doi:10.1006/aphy.2002.6251. arXiv:hep-th/0208194

  20. Hirshfeld, A.C., Henselder, P., Spernat, T.: Cliffordization, spin and fermionic star products. Ann. Phys. 314, 75 (2004). doi:10.1016/j.aop.2004.06.008. arXiv:quant-ph/0404168

  21. Ishibashi, N., Kawai, H., Kitazawa, Y., Tsuchiya, A.: A large N reduced model as superstring. Nucl. Phys. B 498, 467 (1997). arXiv:hep-th/9612115

  22. Karabali, D., Nair, V.P., Randjbar-Daemi, S.: Fuzzy spaces, the M(atrix) model and the quantum Hall effect. In: Shifman, M. (ed.) et al. From fields to strings, vol. 1*, 831–875. arXiv:hep-th/0407007

  23. Karabegov, A.V.: On deformation quantization, on a Kahler manifold, associated to Berezin’s quantization. Funct. Anal. Appl. 30, 142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karabegov, A.V.: Deformation quantizations with separation of variables on a Kahler manifold. Commun. Math. Phys. 180, 745 (1996). arXiv:hep-th/9508013

    Article  ADS  MATH  Google Scholar 

  25. Karabegov, A.V.: On the canonical normalization of a trace density of deformation quantization. Lett. Math. Phys. 45, 217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karabegov, A.V.: An explicit formula for a star product with separation of variables. arXiv:1106.4112 [math.QA]

  27. Kitazawa, Y.: Matrix models in homogeneous spaces. Nucl. Phys. B 642, 210 (2002). arXiv:hep-th/0207115

  28. Kontsevich, M.: Deformation quantization of Poisson manifolds, I. Lett. Math. Phys. 66, 157 (2003). arXiv:q-alg/9709040

  29. Maeda, Y., Sako, A., Suzuki, T., Umetsu, H.: Gauge theories in noncommutative homogeneous Kähler manifolds. J. Math. Phys. 55, 092301 (2014). arXiv:1403.5727 [hep-th]

  30. Maeda, Y., Sako, A., Suzuki, T., Umetsu, H.: Deformation Quantization with Separation of Variables and Gauge Theories. Proceedings, 33th Workshop on Geometric Methods in Physics (XXXIII WGMP): Bialowieza, Poland, June 29–July 5, pp. 135–144 (2014)

  31. Moreno, C.: *-Products on some Kähler manifolds. Lett. Math. Phys. 11, 361 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Moreno, C.: Invariant star products and representations of compact semisimple Lie groups. Lett. Math. Phys. 12, 217 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Nekrasov, N.A.: Trieste lectures on solitons in noncommutative gauge theories. arXiv:hep-th/0011095

  34. Omori, H., Maeda, Y., Yoshioka, A.: Weyl manifolds and deformation quantization. Adv. Math. 85, 224 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Perelomov, A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  36. Pursell, L.E., Shanks, M.E.: The Lie algebra of a smooth manifold. Proc. Am. Math. Soc. 5, 468–472 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rawnsley, J.H.: Coherent states and Kähler manifolds. Quart. J. Math. Oxf Ser. (2) 28, 403 (1977)

  38. Sako, A.: Recent developments in instantons in noncommutative\({\mathbb{R}}^4\). Adv. Math. Phys. 2010, 28 (2010). ID 270694

    Article  MathSciNet  MATH  Google Scholar 

  39. Sako, A., Suzuki, T., Umetsu, H.: Explicit Formulas for Noncommutative Deformations of \(CP^N\) and \(CH^N\). J. Math. Phys. 53, 073502 (2012). arXiv:1204.4030 [math-ph]

  40. Sako, A., Suzuki, T., Umetsu, H.: Noncommutative \(CP^{N}\) and \(CH^N\) and their physics. J. Phys. Conf. Ser. 442, 012052 (2013)

    Article  Google Scholar 

  41. Sako, A., Suzuki, T., Umetsu, H.: Gauge theories on noncommutative \({\mathbb{C}}P^N\) and Bogomol’nyi-Prasad-Sommer field-like equations. J. Math. Phys. 56(11), 113506 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Sako, A., Umetsu, H.: Twisted Fock Representations of noncommutative Kähler manifolds. arXiv:1605.02600 [math-ph]

  43. Schlichenmaier, M.: Berezin–Toeplitz quantization for compact Kahler manifolds: a review of results. Adv. Math. Phys. 2010, 927280 (2010). arXiv:1003.2523 [math.QA]

  44. Schlichenmaier, M.: Berezin–Toeplitz quantization and star products for compact Kähler manifolds. Contemp. Math. 583, 257 (2012)

    Article  MATH  Google Scholar 

  45. Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 9909, 032 (1999). arXiv:hep-th/9908142

  46. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207 (2003). arXiv:hep-th/0109162

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akifumi Sako.

Additional information

Communicated by Rafał Abłamowicz.

The first author is partially supported by JSPS KAKENHI Grant Number 16K05138.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sako, A., Umetsu, H. Fock Representations and Deformation Quantization of Kähler Manifolds. Adv. Appl. Clifford Algebras 27, 2769–2794 (2017). https://doi.org/10.1007/s00006-016-0753-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-016-0753-z

Keywords

Navigation