Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 805–828 | Cite as

Computational Electromagnetism by the Method of Least Action

  • Terje G. Vold


A new general method of computational electromagnetism based on extremizing the electromagnetic action using the geometric algebra of space-time is described. Special cases include a boundary element method and a finite element method. These methods are derived and discussed, computational examples given, and compared with some well known methods of computational electromagnetism.


Computational electromagnetism Least action Lagrangian Geometric algebra 

Mathematics Subject Classification

83A05 78M10 51P05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davidson D.: Computational Electromagnetics for RF and Microwave Engineering, 2nd edn. Cambridge University Press, New York (2011)Google Scholar
  2. 2.
    Doran C., Lasenby A.: Geometric Algebra for Physicists. Cambridge University Press, New York (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Harrington R.: Field Computation by Moment Methods. Macmillan, New York (1968)Google Scholar
  4. 4.
    Hestenes D.: Space-Time Algebra. Gordon and Breach, New York (1966)MATHGoogle Scholar
  5. 5.
    Jin J.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)MATHGoogle Scholar
  6. 6.
    Prautzsch H., Boehm W., Paluszny M.: Bezier and B-Spline Techniques. Springer, New York (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Vold, T.: Computing Electromagnetic Fields by the Method of Least Action. Adv. Appl. Clifford Algebra (2014). doi: 10.1007/s00006-013-0417-1
  8. 8.
    Weinstock R.: Calculus of Variations. Dover, New York (1974)MATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Continuum Technology, Inc.AnacortesUSA

Personalised recommendations