Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 787–803 | Cite as

Equations of Motion and Energy-Momentum 1-Forms for the Coupled Gravitational, Maxwell and Dirac Fields



A theory where the gravitational, Maxwell and Dirac fields (mathematically represented as particular sections of a convenient Clifford bundle) are treated as fields in Faraday’s sense living in Minkowski spacetime is presented. In our theory we obtain a genuine energy-momentum tensor for the gravitational field and a genuine energy-momentum conservation law for the system of the interacting gravitational, Maxwell and Dirac fields. Moreover, the energy-momentum tensors of the Maxwell and Dirac fields are symmetric, and it is shown that the equations of motion for the gravitational potentials are equivalent to Einstein equation of General Relativity. Precisely, the Einstein equation in which the second member is the sum of the energy-momentum tensors of the Maxwell, Dirac and the interaction Maxwell–Dirac fields all defined in an effective Lorentzian spacetime whose use is eventually no more than a question of mathematical convenience.


Energy-Momentum Tensor Gravitational Fields General Relativity Maxwell Fields Dirac Fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dabrowski L., Percacci R.: Spinors diffeomorphisms. Comm. Math. Phys. 106, 691–704 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Fernández, V.V., Moya, A.M., Rodrigues, W.A., Jr.: Euclidean clifford algebra. Adv. Appl. Cliff. Algebras 13(Supplement), 1–21 (2001)Google Scholar
  3. 3.
    Fernández, V.V., Rodrigues, W.A., Jr.: Gravitation as plastic distortion of the Lorentz vacuum, fundamental theories of physics 168, Springer, Heidelberg. [errata for the book at:] (2010)
  4. 4.
    Green H.S.: Spinor fields in general relativity. Proc. R. Soc. Lond. A. Math. Phys. Sci. 364, 591–599 (1958)MATHGoogle Scholar
  5. 5.
    Grib A.A., Mamamyev S.G., Mostepanenko V.M.: Vacuum quantum effects in strong fields. Friedmann Lab Publ, St Petersburg (1994)Google Scholar
  6. 6.
    Guth A.: The Inflationary Universe. Perseus Books, Cambridge (1979)Google Scholar
  7. 7.
    Leão, R.F, Rodrigues, W.A., Jr, Wainer, S.A: Concept of lie derivative of spinor fields. A geometrical motivated approach. Adv. Appl. Cliff. Algebras., erratum at arXiv:1411.7845v3 [math-ph]
  8. 8.
    Helfer, A.D.: Spinor Lie derivatives and Fermion stress-energies. Proc. R. Soc. A (to appear) arXiv:1602.00632 [hep-th]
  9. 9.
    Mol, I.: The non-metricity formulation of general relativity. arXiv:1406.0737v2 [physics.gen-ph]
  10. 10.
    Mosna R.A., Rodrigues W.A. Jr: The bundles of algebraic and Dirac–Hestenes spinor fields. J. Math. Phys 45, 2945–2966 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Notte-Cuello E.A., da Rocha R., Rodrigues W.A. Jr: Some thoughts on geometries and on the nature of the gravitational field. J. Phys. Math 2, 20–40 (2009)MATHGoogle Scholar
  12. 12.
    Rodrigues W.A. Jr: Algebraic Dirac–Hestenes spinors and spinor fields. J. Math. Phys 45, 2908–2994 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    da Rocha R., Rodrigues W.A. Jr, Vaz J. Jr: Hidden consequence of active local Lorentz invariance. Int. J. Geom. Methods Mod. Phys. 2, 305–357 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Rodrigues F.G., Rodrigues W.A. Jr, da Rocha R.: The Maxwell and Navier-Stokes equations that follwos from Einstein equation in a spacetime containing a killing vector field. AIP Conf. Proc. 1483, 277–295 (2012)ADSCrossRefMATHGoogle Scholar
  15. 15.
    Rodrigues, W.A. Jr: The nature of the gravitational field and its legitimate energy-momentum tensor. Rep. Math. Phys. 69, 265–279 (2012). arXiv:1109.5272v2 [math-ph]
  16. 16.
    Rodrigues, W.A. Jr, Oliveira, E.C.: The many faces of Maxwell, Dirac and Einstein equations. In: A clifford bundle approach (2nd edn.). Lecture notes in physics, pp. 922. A preliminary version of this second edition may be found at (2016)
  17. 17.
    Rodrigues, W.A. Jr, Wainer, S.A.: Notes on conservation laws, equations of motion of matter and particle fields in Lorentzian and teleparallel de sitter spacetime structures. Adv. Math. Phys. arXiv:1505.02935v4 [math-ph] (to appear)
  18. 18.
    Tryon E.P.: Is the universe a vacuum fluctuation. Nature 246, 396–397 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    Weinberg S.: Gravitation and Cosmology. Wiley, New York (1972)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Institute of MathematicsStatistics and Scientific ComputationCampinasBrazil

Personalised recommendations