Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 99–110 | Cite as

General Integral Formulas for k-hyper-mono-genic Functions



We are studying a function theory of k-hypermonogenic functions connected to k-hyperbolic harmonic functions that are harmonic with respect to the hyperbolic Riemannian metric
$$ds_{k}^{2} = x_{n}^{\frac{2k}{1-n}} \left(dx_{0}^{2} + \cdots + dx_{n}^{2} \right)$$
in the upper half space \({\mathbb{R}_{+}^{n+1} = \left\{\left(x_{0}, \ldots,x_{n}\right)\,|\,x_{i} \in \mathbb{R}, x_{n} > 0\right\}}\). The function theory based on this metric is important, since in case \({k = n-1}\), the metric is the hyperbolic metric of the Poincaré upper half space and Leutwiler noticed that the power function \({x^{m}\,(m \in \mathbb{N}_{0})}\), calculated using Clifford algebras, is a conjugate gradient of a hyperbolic harmonic function. We find a fundamental \({k}\)-hyperbolic harmonic function. Using this function we are able to find kernels and integral formulas for k-hypermonogenic functions. Earlier these results have been verified for hypermonogenic functions (\({k = n-1}\)) and for k-hyperbolic harmonic functions in odd dimensional spaces.


k-hypermonogenic k-hyperbolic Laplace–Beltrami monogenic Clifford algebra hyperbolic metric hyperbolic Laplace 

Mathematics Subject Classification

Primary 30A05 Secondary 30A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akin, Ö., Leutwiler, H.: On the invariance of the solutions of the Weinstein equation under Möbius transformations. In: Classical and Modern Potential Theory and Applications (Chateau de Bonas, 1993), pp. 19–29, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 430. Kluwer, Dordrecht (1994)Google Scholar
  2. 2.
    Eriksson-Bique, S.-L.: k-hypermonogenic functions. In: Begerh, H., Gilbert, R., Wong, M.W. (eds.) Progress in Analysis, pp. 337–348. World Scientific, Singapore (2003)Google Scholar
  3. 3.
    Eriksson S.-L.: Integral formulas for hypermonogenic functions. Bull. Belgian Math. Soc. 11, 705–717 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    Eriksson, S.-L.: Hyperbolic extensions of integral formulas. Adv. Appl. Clifford Alg. 20(3–4), 575–586 (2010)Google Scholar
  5. 5.
    Eriksson-Bique, S.-L., Leutwiler, H.: Hypermonogenic functions. In: Clifford Algebras and their Applications in Mathematical Physics, vol. 2, pp. 287–302. Birkhäuser, Boston (2000)Google Scholar
  6. 6.
    Eriksson, S.-L., Leutwiler, H.: Hyperbolic harmonic functions anf their function theory. In: Potential Theory and Stochatics in Albac, pp. 85–100 (2009)Google Scholar
  7. 7.
    Eriksson, S.-L., Leutwiler, H.: Introduction to hyperbolic function theory. Proceedings of Clifford Algebras Inverse Problems Tampere University of Technology. Research Report No. 90, pp. 1–28 (2009)Google Scholar
  8. 8.
    Eriksson, S.-L., Orelma, H.: Fundamental solution of k-hyperbolic harmonic functions in odd spaces. In: 30th International Colloquium on Group Theoretical Methods in Physics (Group 30) IOP Publishing Journal of Physics: Conference Series, vol. 597 (2015). doi: 10.1088/1742-6596/597/1/012034
  9. 9.
    Eriksson S.-L., Orelma H.: On hypermonogenic functions. Complex Var. Elliptic Equ. 58(7), 975–990 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier, Amsterdam (2007)Google Scholar
  11. 11.
    Leutwiler H.: Modified Clifford analysis. Complex Var. 17, 153–171 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Leutwiler H.: Modified quaternionic analysis in \({\mathbb{R}^{3}}\). Complex Var. 20, 19–51 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Leutwiler, H.: Appendix: Lecture notes of the course “Hyperbolic harmonic functions and their function theory”. Clifford Algebras and Potential Theory, pp. 85–109. Univ. Joensuu Dept. Math. Rep. Ser., vol. 7. Univ. Joensuu, Joensuu (2004)Google Scholar
  14. 14.
    Olver, F.W.J.: Asymptotics and Special Functions. A. K. Peters, Wellesley (1997)Google Scholar
  15. 15.
    Orelma, H.: New Perspectives in Hyperbolic Function Theory. TUT, Dissertation 892 (2010)Google Scholar
  16. 16.
    Orelma H.: Harmonic forms on conformal euclidean manifolds: the Clifford multivector approach. Adv. Appl. Clifford Algebras 22, 143–158 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Department of MathematicsTampere University of TechnologyTampereFinland

Personalised recommendations