Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 303–310 | Cite as

Nonassociative Generalization of Supersymmetry

Article
  • 48 Downloads

Abstract

A nonassociative generalization of supersymmetry is studied, where supersymmetry generators are considered to be the nonassociative ones. Associators for the product of three and four multipliers are defined. Using a special choice of the parameters, it is shown that the associator of the product of four supersymmetry generators is connected with the angular momentum operator. The connection of operator decomposition to the hidden variables theory and alternative quantum mechanics is discussed.

Mathematics Subject Classification

Primary 17A70 Secondary 17D99 

Keywords

Supersymmetry non-associativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okubo S.: Introduction to Octonion and Other Non-Associative Algebras in Physics. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  2. 2.
    Carrion, H.L., Rojas, M., Toppan, F.: JHEP, 0304, p. 040 (2003). arXiv:hep-th/0302113
  3. 3.
    Castro C.: Int. J. Geom. Meth. Mod. Phys. 9, 1250021 (2012)CrossRefGoogle Scholar
  4. 4.
    Gogberashvili, M.: J. Phys. A, 39, p. 7099 (2006). arXiv:hep-th/0512258
  5. 5.
    Gogberashvili, M.: Int. J. Mod. Phys. A., 21, p. 3513 (2006). arXiv:hep-th/0505101
  6. 6.
    Beggs, E.J., Majid, S.: J. Math. Phys. 51, p. 053522 (2010). arXiv:0506450 [math-qa]
  7. 7.
    Sabinin L.V.: Int. J. Theor. Phys. 40, 351 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wulkenhaar, R., Phys. Lett. B., 390, p. 119 (1997). arXiv:hep-th/9607096
  9. 9.
    Ahn C., Bernard D., Leclair A.: Nucl. Phys. B 34, 409–439 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Mohammedi, N., Moultaka, G., Rauschde Traubenberg, M.: Int. J. Mod. Phys. A., 19, p. 5585 (2004). arXiv:hep-th/0305172
  11. 11.
    Rauschde Traubenberg, M.: eConf C, 0306234, p. 578 (2003). arXiv:hep-th/0312066
  12. 12.
    Bars I., Gunaydin M.: J. Math. Phys. 20, 1977 (1979)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Castro C.: Int. J. Geom. Meth. Mod. Phys 11(3), 1450013 (2014)CrossRefGoogle Scholar
  14. 14.
    Yamazaki, M.: Phys. Lett. B., 670, p. 215 (2008). arXiv:0809.1650 [hep-th]
  15. 15.
    Dzhunushaliev, V.:J. Gen. Lie Theor. Appl., 3, pp. 33–38, (2009). arXiv:0805.3221
  16. 16.
    Dzhunushaliev, V.:J. Math. Phys., 49, p. 042108 (2008). arXiv:0712.1647 [quant-ph]

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Theoretical and Nuclear PhysicsKazNUAlmatyKazakhstan
  2. 2.IETP, Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations