Advertisement

Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 279–290 | Cite as

Gauge Group of the Standard Model in Cl 1,5

Open Access
Article

Abstract

Describing a wave with spin 1/2, the Dirac equation is form invariant under \({SL(2,\mathbb{C})}\), subgroup of \({Cl_3^*=GL(2,\mathbb{C})}\) which is the true group of form invariance of the Dirac equation. Firstly we use the Cl 3 algebra to read all features of the Dirac equation for a wave with spin 1/2. We extend this to electromagnetic laws. Next we get the gauge group of electro-weak interactions, first in the leptonic case, electron+neutrino, next in the quark case. The complete wave for all objects of the first generation uses the Clifford algebra Cl 1,5. The gauge group is then enlarged into a \({U(1)\times SU(2)\times SU(3)}\) Lie group. We consolidate both the standard model and the use of Clifford algebras, true mathematical frame of quantum physics.

Mathematics Subject Classification

15A66 35Q41 81T13 83E15 

Keywords

Invariance group Dirac equation Electromagnetism Weak interactions Strong interactions Standard model Clifford algebra 

References

  1. 1.
    Boudet, R.: Quantum Mechanics in the Geometry of Space-Time. Springer, Heidelberg Dordrecht London New York (2011)Google Scholar
  2. 2.
    Daviau, C.: Equation de Dirac non linéaire. PhD thesis, Université de Nantes (1993).Google Scholar
  3. 3.
    Daviau C: Interprétation cinématique de l’onde de l’électron. Ann. Fond. L. de Broglie 30, 3–4 (2005)MathSciNetGoogle Scholar
  4. 4.
    Daviau C: \({{C}l_3^*}\) invariance of the Dirac equation and of electromagnetism. Adv. Appl. Clifford Algebr. 22(3), 611–623 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Daviau, C.: Double Space-Time and More. JePublie, Pouillé-les-coteaux (2012)Google Scholar
  6. 6.
    Daviau C: Invariant quantum wave equations and double space-time. Adv. Imaging Elect. Phys. 179(1), 1–137 (2013)CrossRefGoogle Scholar
  7. 7.
    Daviau C, Bertrand J: A lepton Dirac equation with additional mass term and a wave equation for a fourth neutrino. Ann. Fond. Louis de Broglie 38, 57–81 (2013)MathSciNetMATHGoogle Scholar
  8. 8.
    Daviau, C., Bertrand, J.: Relativistic gauge invariant wave equation of the electron-neutrino. J. Modern Phys. 5, 1001–1022 (2014). doi: 10.4236/jmp.2014.511102
  9. 9.
    Daviau, C., Bertrand, J.: A wave equation including leptons and quarks for the standard model of quantum physics in Clifford algebra. J. Modern Phys. 5, 2149–2173 (2014). doi: 10.4236/jmp.2014.518210
  10. 10.
    Daviau, C.; Bertrand. J.: New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux. http://hal.archives-ouvertes.fr/hal-00907848 (2014)
  11. 11.
    Hestenes, D.: A unified language for mathematics and physics and Clifford Algebra and the interpretation of quantum mechanics. In: Chisholm, J.S.R. and Common, A.K. (eds.) Clifford Algebras and Their Applications in Mathematics and Physics. Reidel, Dordrecht (1986)Google Scholar
  12. 12.
    Daviau, C., Bertrand, J.: Additional insights in the standard model of quantum physics in clifford algebra. (To be published)Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Le Moulin de la LandePouillé-les-coteauxFrance

Personalised recommendations