Advertisement

Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 59–70 | Cite as

Noncommutative Galois Extensions and Ternary Clifford Analysis

  • Alexandre Trovon
  • Osamu Suzuki
Article

Abstract

In this paper we introduce the idea of Galois extension for a class of associative algebras and discuss binary and ternary Clifford algebras by such an algebraic construction. Nonion algebra is characterized by Galois extensions and a ternary structure is proposed for \({\mathfrak{su}(3)}\) leading to a duality for certain binary and ternary differential operators.

Mathematics Subject Classification

Primary 17A40 Secondary 13B05 

Keywords

Noncommutative Galois extension ternary Clifford algebra ternary Clifford analysis quark model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramov V.: \({\mathbb{Z}_3}\) -graded analogues of Clifford algebras and algebra of \({\mathbb{Z}_3}\) -graded symmetries. Algebras Groups Geom. 12, 201–221 (1995)MathSciNetMATHGoogle Scholar
  2. 2.
    Abramov V., Kerner R., Le Roy B.: Hypersymmetry: a Z 3-graded generalization of supersymmetry. J. Math. Phys. 38(3), 1650–1669 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Georgi, H.: Lie Algebras in Particle Physics, 2nd edn. Westview Press, Cambridge (1999)Google Scholar
  4. 4.
    Kerner R.: Ternary and non-associative structures. Int. J. Geom. Methods Mod. Phys. 5(8), 1265–1294 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kerner, R. Spacetime symmetries and Z3-graded quark algebra. J. Phys. Conf. Ser. 343, 012056 (2012). doi: 10.1088/1742-6596/343/1/012056
  6. 6.
    Kerner, R., Suzuki, O.: Internal symmetry groups of cubic algebras. Int. J. Geom. Methods Mod. Phys. 09, 1261007 (2012). doi: 10.1142/S0219887812610075
  7. 7.
    Ławrynowicz, J., Nouno, K., Nagayama, D., Suzuki, O.: A method of non-commutative Galois theory for binary and ternary Clifford analysis. AIP Conf. Proc. 1493, 1007 (2012). doi: 10.1063/1.4765611
  8. 8.
    Ławrynowicz J., Nouno K., Nagayama D., Suzuki O.: A method of noncommutative Galois theory for construction of quark models (Kobayashi–Masukawa model) I. Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform. 63(1), 95–112 (2013)MATHGoogle Scholar
  9. 9.
    Lawson, B., Michelsohn, M.: Spin Geometry. Princeton University Press, Princeton (1990)Google Scholar
  10. 10.
    Marcus, M.: Finite Dimensional Multilinear Algebra—Part II. Marcel Dekker, New York (1975)Google Scholar
  11. 11.
    Pierce, C.: On nonions. In: Collected Papers of Charles Sanders Peirce, 3rd edn. vol. III, pp. 411–416. Harvard University Press, Cambridge (1967)Google Scholar
  12. 12.
    Sylvester, J.: A word on nonions. In: The Collected Mathematics Papers of James Joseph Sylvester, vol. III, pp. 647–650. Cambridge University Press, Cambridge (1909)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal do ParanaCuritibaBrazil
  2. 2.Department of Computer Sciences and System Analysis, College of Humanities and SciencesNihon UniversitySetagaya-kuJapan

Personalised recommendations