Advertisement

Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 209–227 | Cite as

Concept of Lie Derivative of Spinor Fields A Geometric Motivated Approach

  • Rafael F. Leão
  • Waldyr Alves RodriguesJr.
  • Samuel A. Wainer
Article

Abstract

In this paper using the Clifford bundle (\({\mathcal{C}\ell(M,\mathtt{g})}\)) and spin-Clifford bundle (\({\mathcal{C}\ell_{\mathrm{Spin}_{1,3}^{e}} (M,\mathtt{g})}\)) formalism, which allow to give a meaningful representative of a Dirac-Hestenes spinor field (even section of \({\mathcal{C}\ell_{\mathrm{Spin}_{1,3}^{e}}(M,\mathtt{g})}\)) in the Clifford bundle, we give a geometrical motivated definition for the Lie derivative of spinor fields in a Lorentzian structure (M, g) where M is a manifold such that dim M = 4, g is Lorentzian of signature (1, 3). Our Lie derivative, called the spinor Lie derivative (and denoted \({\overset{s}{\pounds}_{\boldsymbol{\xi}}}\)) is given by nice formulas when applied to Clifford and spinor fields, and moreover \({\overset{s}{\pounds }_{{\xi}}{\boldsymbol {g}}=0}\) for any vector field \({\boldsymbol {\xi}}\) . We compare our definitions and results with the many others appearing in literature on the subject.

Keywords

Lie derivative Spinors fields Dirac-Hestenes spinor fields Clifford bundle Spin-Clifford bundle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benn I.M., Tucker R.W.: An Introduction to Spinors and Geometry with Applications in Physics. Adam Hilger, Bristol (1987)MATHGoogle Scholar
  2. 2.
    Blaine Lawson H. Jr, Michelsohn M.-L.: Spin Geometry. Princeton University Press, New Jersey (1989)MATHGoogle Scholar
  3. 3.
    Bourguignon J.-P., Gauduchon P.: Spineurs, operateurs de dirac et variations de métriques. Commun. Math. Phys. 144, 581–599 (1992)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Choquet-Bruhat, Y., DeWitt-Morette, C., Deillard-Bleick, M.: Analysis, Manifolds and Physics, revised edn. North-Holland, Amsterdam (1982)Google Scholar
  5. 5.
    Crummeyrole, A.: Orthogonal and Symplectic Clifford Algebras. Kluwer, Dordrecht (1990)Google Scholar
  6. 6.
    Dabrowski L., Percacci R.: Spinors and diffeomorphisms. Commun. Math. Phys. 106, 691–704 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Eck D.J.: Gauge natural bundles and gauge theories. Mem. Am. Math. Soc. 33, 247 (1981)MathSciNetMATHGoogle Scholar
  8. 8.
    Fatibene L., Francaviglia M.: Natural and Gauge Natural Formalism for Classical Field Theories. Kluwer, Dordrecht (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Fatibene, L., Ferraris, M., Francaviglia, M, Godina, M.: A geometric definition of lie derivative for spinor fields. In: Proc. of the 6th International Conference on Differential Geometry and Applications, August 28th-September 1st 1995 (Brno, Czech Republic). Masaryk University, Brno. [arXiv:gr-qc/9608003]
  10. 10.
    Geroch R.: Spinor structure of space-times in general relativity I. J. Math. Phys. 9, 1739–1744 (1968)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Godina, M., Matteucci, P.: The lie derivative of spinor fields: theory and applications. Int. J. Geom. Methods Mod. Phys. 2, 159–188 (2005) arXiv:math/0504366 [math.DG]
  12. 12.
    Godina, M., Matteucci, P.: Reductive G-structures and lie derivatives [arXiv:math/0201235v2 [math-DG]]
  13. 13.
    Gürsey, F.: Introduction to group theory. In: De Witt, C., De Witt, B. (eds.) Relativity, Groups and Topology. Gordon and Breach, New York (1963)Google Scholar
  14. 14.
    Hurley, D.J., Vandyck, M.A.: Geometry, Spinors and Applications. Springer (published in association with Praxis Publ., Chichester), Berlin (2000)Google Scholar
  15. 15.
    Kolář I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  16. 16.
    Kobayashi, S., Nomizu, K., Foundations of differential geometry, vol. I, Wiley, New York (1981)Google Scholar
  17. 17.
    Kosmann Y.: Dérivées de lie des spineurs. C. R. Acad. Sci. Paris Sér. A 262, 289–292 (1966)MathSciNetMATHGoogle Scholar
  18. 18.
    Kosmann Y.: Dérivées de lie des spineurs. Applications. C. R. Acad. Sci. Paris Sér. A 262, 394–397 (1966)MathSciNetMATHGoogle Scholar
  19. 19.
    Kosmann Y.: Propriétés des dérivations de l’algèbre des tenseurs-spineurs. C. R. Acad. Sci. Paris Sér. A 264, 355–358 (1967)MathSciNetMATHGoogle Scholar
  20. 20.
    Kosmann, Y.: Dérivées de lie des spineurs (thèse). Ann. Mat. Pura Appl. IV, 317–395 (1972).Google Scholar
  21. 21.
    Lawson H.B. Jr., Michelson M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)Google Scholar
  22. 22.
    Lichnerowicz A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)MathSciNetMATHGoogle Scholar
  23. 23.
    Lounesto P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  24. 24.
    Lovelok, D., Rund, H., Tensors: Differential Forms, and Variational Principles. Wiley, New York (1975)Google Scholar
  25. 25.
    Mosna, R.A., Rodrigues, W.A. Jr.: The bundles of algebraic and Dirac-Hestenes spinor fields. J. Math. Phys 45, 2945–2966 (2004) arXiv:math-ph/0212033
  26. 26.
    Penrose, R., Rindler, W.: Spinors and spacetime. In: Spinor and Twistor Methods in Spacetime Geometry, vol. 2. Cambridge University Press, Cambridge (1986)Google Scholar
  27. 27.
    Rodrigues, W.A. Jr.: Algebraic and Dirac-Hestenes spinors and spinor fields. J. Math. Phys. 45, 2908–2994 (2004) arXiv:math-ph/0212030
  28. 28.
    Rodrigues, W.A. Jr.: Algebraic and Dirac-Hestenes spinors and spinor fields. J. Math. Phys. 45, 2908–2994 (2004) arXiv:math-ph/0212030
  29. 29.
    Rodrigues, W.A. Jr., Capelas de Oliveira, E.: The many faces of Maxwell, Dirac and Einstein equation. In: A Clifford Bundle Approach, Lecture Notes in Physics, vol. 722, Springer, Heidelberg (2007). (A preliminary enlarged second edition may be found at http://www.ime.unicamp.br/~walrod/mde100214.pdf)
  30. 30.
    Rodrigues, W.A. Jr.: Nature of the gravitational field and its legitimate energy-momentum tensor. Rep. Math. Phys. 69, 265–279 (2012) arXiv:1109.5272 [math-ph]
  31. 31.
    Weinberg S.: Gravitation and Cosmology; Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Rafael F. Leão
    • 1
  • Waldyr Alves RodriguesJr.
    • 1
  • Samuel A. Wainer
    • 1
  1. 1.Institute of Mathematics Statistics and Scientific ComputationCampinasBrazil

Personalised recommendations