Skip to main content
Log in

Concept of Lie Derivative of Spinor Fields A Geometric Motivated Approach

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

An Erratum to this article was published on 29 December 2015

Abstract

In this paper using the Clifford bundle (\({\mathcal{C}\ell(M,\mathtt{g})}\)) and spin-Clifford bundle (\({\mathcal{C}\ell_{\mathrm{Spin}_{1,3}^{e}} (M,\mathtt{g})}\)) formalism, which allow to give a meaningful representative of a Dirac-Hestenes spinor field (even section of \({\mathcal{C}\ell_{\mathrm{Spin}_{1,3}^{e}}(M,\mathtt{g})}\)) in the Clifford bundle, we give a geometrical motivated definition for the Lie derivative of spinor fields in a Lorentzian structure (M, g) where M is a manifold such that dim M = 4, g is Lorentzian of signature (1, 3). Our Lie derivative, called the spinor Lie derivative (and denoted \({\overset{s}{\pounds}_{\boldsymbol{\xi}}}\)) is given by nice formulas when applied to Clifford and spinor fields, and moreover \({\overset{s}{\pounds }_{{\xi}}{\boldsymbol {g}}=0}\) for any vector field \({\boldsymbol {\xi}}\) . We compare our definitions and results with the many others appearing in literature on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benn I.M., Tucker R.W.: An Introduction to Spinors and Geometry with Applications in Physics. Adam Hilger, Bristol (1987)

    MATH  Google Scholar 

  2. Blaine Lawson H. Jr, Michelsohn M.-L.: Spin Geometry. Princeton University Press, New Jersey (1989)

    MATH  Google Scholar 

  3. Bourguignon J.-P., Gauduchon P.: Spineurs, operateurs de dirac et variations de métriques. Commun. Math. Phys. 144, 581–599 (1992)

    Article  ADS  MATH  Google Scholar 

  4. Choquet-Bruhat, Y., DeWitt-Morette, C., Deillard-Bleick, M.: Analysis, Manifolds and Physics, revised edn. North-Holland, Amsterdam (1982)

  5. Crummeyrole, A.: Orthogonal and Symplectic Clifford Algebras. Kluwer, Dordrecht (1990)

  6. Dabrowski L., Percacci R.: Spinors and diffeomorphisms. Commun. Math. Phys. 106, 691–704 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Eck D.J.: Gauge natural bundles and gauge theories. Mem. Am. Math. Soc. 33, 247 (1981)

    MathSciNet  MATH  Google Scholar 

  8. Fatibene L., Francaviglia M.: Natural and Gauge Natural Formalism for Classical Field Theories. Kluwer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  9. Fatibene, L., Ferraris, M., Francaviglia, M, Godina, M.: A geometric definition of lie derivative for spinor fields. In: Proc. of the 6th International Conference on Differential Geometry and Applications, August 28th-September 1st 1995 (Brno, Czech Republic). Masaryk University, Brno. [arXiv:gr-qc/9608003]

  10. Geroch R.: Spinor structure of space-times in general relativity I. J. Math. Phys. 9, 1739–1744 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Godina, M., Matteucci, P.: The lie derivative of spinor fields: theory and applications. Int. J. Geom. Methods Mod. Phys. 2, 159–188 (2005) arXiv:math/0504366 [math.DG]

  12. Godina, M., Matteucci, P.: Reductive G-structures and lie derivatives [arXiv:math/0201235v2 [math-DG]]

  13. Gürsey, F.: Introduction to group theory. In: De Witt, C., De Witt, B. (eds.) Relativity, Groups and Topology. Gordon and Breach, New York (1963)

  14. Hurley, D.J., Vandyck, M.A.: Geometry, Spinors and Applications. Springer (published in association with Praxis Publ., Chichester), Berlin (2000)

  15. Kolář I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  16. Kobayashi, S., Nomizu, K., Foundations of differential geometry, vol. I, Wiley, New York (1981)

  17. Kosmann Y.: Dérivées de lie des spineurs. C. R. Acad. Sci. Paris Sér. A 262, 289–292 (1966)

    MathSciNet  MATH  Google Scholar 

  18. Kosmann Y.: Dérivées de lie des spineurs. Applications. C. R. Acad. Sci. Paris Sér. A 262, 394–397 (1966)

    MathSciNet  MATH  Google Scholar 

  19. Kosmann Y.: Propriétés des dérivations de l’algèbre des tenseurs-spineurs. C. R. Acad. Sci. Paris Sér. A 264, 355–358 (1967)

    MathSciNet  MATH  Google Scholar 

  20. Kosmann, Y.: Dérivées de lie des spineurs (thèse). Ann. Mat. Pura Appl. IV, 317–395 (1972).

  21. Lawson H.B. Jr., Michelson M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    Google Scholar 

  22. Lichnerowicz A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  23. Lounesto P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  24. Lovelok, D., Rund, H., Tensors: Differential Forms, and Variational Principles. Wiley, New York (1975)

  25. Mosna, R.A., Rodrigues, W.A. Jr.: The bundles of algebraic and Dirac-Hestenes spinor fields. J. Math. Phys 45, 2945–2966 (2004) arXiv:math-ph/0212033

  26. Penrose, R., Rindler, W.: Spinors and spacetime. In: Spinor and Twistor Methods in Spacetime Geometry, vol. 2. Cambridge University Press, Cambridge (1986)

  27. Rodrigues, W.A. Jr.: Algebraic and Dirac-Hestenes spinors and spinor fields. J. Math. Phys. 45, 2908–2994 (2004) arXiv:math-ph/0212030

  28. Rodrigues, W.A. Jr.: Algebraic and Dirac-Hestenes spinors and spinor fields. J. Math. Phys. 45, 2908–2994 (2004) arXiv:math-ph/0212030

  29. Rodrigues, W.A. Jr., Capelas de Oliveira, E.: The many faces of Maxwell, Dirac and Einstein equation. In: A Clifford Bundle Approach, Lecture Notes in Physics, vol. 722, Springer, Heidelberg (2007). (A preliminary enlarged second edition may be found at http://www.ime.unicamp.br/~walrod/mde100214.pdf)

  30. Rodrigues, W.A. Jr.: Nature of the gravitational field and its legitimate energy-momentum tensor. Rep. Math. Phys. 69, 265–279 (2012) arXiv:1109.5272 [math-ph]

  31. Weinberg S.: Gravitation and Cosmology; Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Wainer.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00006-015-0632-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leão, R.F., Rodrigues, W.A. & Wainer, S.A. Concept of Lie Derivative of Spinor Fields A Geometric Motivated Approach. Adv. Appl. Clifford Algebras 27, 209–227 (2017). https://doi.org/10.1007/s00006-015-0560-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-015-0560-y

Keywords

Navigation