Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 255–266 | Cite as

On Some Novel Consequences of Clifford Space Relativity Theory

  • Carlos CastroEmail author


Some of the novel physical consequences of the Extended Relativity Theory in C-spaces (Clifford spaces) are presented. In particular, generalized photon dispersion relations which allow for energy-dependent speeds of propagation while still retaining the Lorentz symmetry in ordinary spacetimes, while breaking the extended Lorentz symmetry in C-spaces. We analyze in further detail the extended Lorentz transformations in Clifford Space and their physical implications. Based on the notion of “extended events” one finds a very different physical explanation of the phenomenon of “relativity of locality” than the one described by the doubly special relativity framework. We finalize with a discussion of the modified dispersion relations, rainbow metrics and generalized uncertainty relations in C-spaces which are extensions of the stringy uncertainty relations.


Clifford algebras and Extended relativity in Clifford spaces Modified dispersion relations Rainbow metrics Generalized uncertainty principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amelino-Camelia G.: Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys D 11, 35 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amelino-Camelia G.: Doubly-special relativity: first results and key open problems. Int. J. Mod. Phys D 11, 1643 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L.: The principle of relative locality.
  4. 4.
    Amati D., Ciafaloni M., Veneziano G.: Superstring collisions at planckian energies. Phys. Lett. B 197, 81–88 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    Castro C., Pavsic M.: Higher derivative gravity and torsion from the geometry of C-spaces. Phys. Lett. B 539, 133 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Castro C., Pavsic M.: On Clifford algebras of spacetime and the conformal group. Int. J. Theor. Phys 42, 1693 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Castro C., Pavsic M.: The extended relativity theory in Clifford-spaces. Prog. Phys. 1, 31 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Castro C.: Superluminal particles and the extended relativity theories. Found. Phys. 42(9), 1135 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Castro C.: The extended relativity theory in Clifford phase spaces and modifications of gravity at the planck/hubble scales. Adv. Appl. Clifford Algebras 24, 29–53 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Castro C.: Novel physical consequences of the extended relativity in Clifford spaces. Adv. Appl. Clifford Algebras 25, 65–79 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    da Rocha R., Bernardini A.E., Vaz J. Jr: \({\kappa}\) -deformed Poincare algebras and quantum Clifford–Hopf algebras int. J. Geom. Meth. Mod. Phys. 7, 821–836 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gross D., Mende P.: The high-energy behavior of string scattering amplitudes. Phys. Lett. B 197, 129–134 (1987)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kempf A., Mangano G.: Minimal length uncertainty relation and ultraviolet regularisation. Phys. Rev. D 55, 7909–7920 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Lukierski J., Nowicki A., Ruegg H., Tolstoy V.: q-deformation of Poincare algebra. Phys. Lett. B 264, 331–338 (1991)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Majid S., Ruegg H.: Bicrossproduct structure of \({\kappa}\) -Poincare group and non-commutative geometry. Phys. Lett. B 334, 348–354 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Magueijo J., Smolin L.: Gravity’s rainbow. Class. Quant. Grav. 21, 1725–1736 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nottale, L.: Fractal Space-time and Micro-physics. World Scientific, Singapore (1993)Google Scholar
  18. 18.
    Nottale, L.: Scale Relativity and Fractal Space-time: a New Approach to Unifying Relativity and Quantum Mechanics. World Scientific Publishing Company, Singapore (2011)Google Scholar
  19. 19.
    Pavsic, M.: The landscape of theoretical physics: a global view, from point particles to the brane world and beyond, in search of a unifying principle. In: Fundamental Theories of Physics, vol. 19. Kluwer, Dordrecht (2001)Google Scholar
  20. 20.
    Pavsic M.: A novel view on the physical origin of \({{\rm E}_8}\). J. Phys. A 41, 332001 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Quantum Gravity Research GroupTopangaUSA
  2. 2.Center for Theoretical Studies of Physical SystemsClark Atlanta UniversityAtlantaUSA

Personalised recommendations