Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 291–302 | Cite as

Translational and Rotational Properties of Tensor Fields in Relativistic Quantum Mechanics

Article
  • 44 Downloads

Abstract

Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Furthermore, several authors recently claimed existence of the helicity = 0 fundamental field. We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for this venture is the old papers of Ogievetskiĭ and Polubarinov, Hayashi, and Kalb and Ramond. They proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. We also proceed to derive equations for the symmetric tensor of the second rank on the basis of the Bargmann-Wigner formalism They are consistent with the general relativity. Particular attention has been paid to the correct definitions of the energy-momentum tensor and other Nöther currents. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph.

Mathematics Subject Classification

81T99 83C47 83D05 

Keywords

Lorentz Group Notoph Kalb-Ramond Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahluwalia D.V., Ernst D.J.: Int. J. Mod. Phys. E. 2, 397 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Ahluwalia D.V., Sawicki M.: Phys. Rev. D. 47, 5161 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Avdeev, L.V., Chizhov, M.V., Phys. Lett. B 321, 212 (1994). arXiv:hep-th/9407067
  4. 4.
    Bargmann V., Wigner E.P.: Proc. Natl. Acad. Sci. (USA) 34, 211 (1948)ADSCrossRefGoogle Scholar
  5. 5.
    Belinfante F.: Physica 6, 887 (1939)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chizhov M.V.: Phys. Part. Nucl. 42, 93 (2011)CrossRefGoogle Scholar
  7. 7.
    Durandin E., Erschow A.: Phys. Z. Sowjet. 12, 466 (1937)Google Scholar
  8. 8.
    Dvoeglazov, V.V.: Int. J. Theory Phys., 37, 1915 (1998). arXiv:hep-th/9611068
  9. 9.
    Dvoeglazov V.V., Faustov R.N., Tyukhtyaev Yu N.: Phys. Part. Nucl. 25, 58 (1994)Google Scholar
  10. 10.
    Dvoeglazov V.V.: Hadronic J. Suppl. 12, 221 (1997)Google Scholar
  11. 11.
    Dvoeglazov, V.V.: Czech. J. Phys. 50, 225 (2000). arXiv:hep-th/9712036
  12. 12.
    Dvoeglazov, V.V.: Adv. Appl. Clifford Algebr. 10, 7 (2000). arXiv:math-ph/9805017
  13. 13.
    Dvoeglazov V.V.: Acta Phys. Slovaca. 50, 629 (2000)Google Scholar
  14. 14.
    Dvoeglazov, V.V.: Electromagn. Phenom. 2(1(5)), 3 (2001). arXiv:hep-ph/9801287
  15. 15.
    Dvoeglazov, V.V.: Phys. Scr. 64, 201 (2001). arXiv:physics/9804010
  16. 16.
    Dvoeglazov V.V.: Int. J. Mod. Phys. CS. 3, 121 (2011)Google Scholar
  17. 17.
    Hayashi K.: Phys. Lett. B. 44, 497 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    Kalb M., Ramond P.: Phys. Rev. D. 9, 2273 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    Kirchbach M.: Mod. Phys. Lett. A. 12, 2373 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Luriè, D.: Particles and Fields. Interscience Publishers, New York (1968). Ch. 1Google Scholar
  21. 21.
    Marques G., Spehler D.: Mod. Phys. Lett. A. 13, 553 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Naik P.C., Pradhan T.: J. Phys. A. 14, 2795 (1981)ADSCrossRefGoogle Scholar
  23. 23.
    Ogievetskiĭ, V.I.; Polubarinov, I.V.: Yadern. Fiz. 4, 216 (1966). (English translation: Sov. J. Nucl. Phys. 4, 156 (1967))Google Scholar
  24. 24.
    Ohanian H.C.: Am. J. Phys. 54, 500 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    Pradhan T., Malik R.P., Naik P.C.: Pramana J. Phys. 24, 77 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    Staruszkiewicz, A.: Acta Phys. Polon. B 13, 617 (1982); ibid. 14, 63, 67, 903 (1983); ibid. 15, 225 (1984); ibid. 23, 591 (1992)Google Scholar
  27. 27.
    Tam A.C., Happer W.: Phys. Rev. Lett. 38, 278 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    Tucker R.H., Hammer C.L.: Phys. Rev. D. 3, 2448 (1971)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Weinberg, S.: Phys. Rev. B 133, 1318 (1964); ibid. B 134, 882 (1964); ibid. 181, 1893 (1969)Google Scholar
  30. 30.
    Weinberg, S.: The Quantum Theory of fields. Foundations, vol. I. Cambridge University Press, Cambridge (1995). Ch. 5Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Universidad Autónoma de Zacatecas (UAF)ZacatecasMéxico

Personalised recommendations