Skip to main content
Log in

Appell Bases for Monogenic Functions of Three Variables

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Monogenic (or hyperholomorphic) functions are well known in general Clifford algebras but have been little studied in the particular case \({\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}\). We describe for this case the collection of all Appell systems: bases for the finite-dimensional spaces of monogenic homogeneous polynomials which respect the operator \({D = \partial_{0} - \vec{\partial}}\). We prove that no purely algebraic recursive formula (in a specific sense) exists for these Appell systems, in contrast to the existence of known constructions for \({\mathbb{R}^{3} \rightarrow \mathbb{R}^{4}}\) and \({\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}}\). However, we give a simple recursive procedure for constructing Appell bases for \({\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}\) which uses the operation of integration of polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appell P.: Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 9, 119–144 (1880)

    MathSciNet  MATH  Google Scholar 

  2. S. Bock, Űber funktionentheoretische Methoden in der räumlichen Elastizitätstheorie. Doctoral dissertation, Bauhaus–University, Weimar (2009).

  3. Bock S., Gürlebeck K.: On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 4(33), 394–411 (2010)

    Google Scholar 

  4. S. Bock, Orthogonal Appell bases in dimensions 2, 3 and 4. Presented at the ICNAAM Conference, Rhodes, Greece, 2010.

  5. S. Bock, On a three–dimensional analogue to the holomorphic z–powers: power series and recurrence formulae [erratium]. Complex Var. Elliptic Equ. 57:1 (2012), 111–112.

  6. F. Brackx, R. Delanghe, F. Sommen, Clifford analysis. Research Notes in Mathematics 76 Pitman (Advanced Publishing Program), Boston, MA (1982).

  7. I. Cação, Constructive approximation by monogenic polynomials. Doctoral dissertation, Universidade de Aveiro (2004).

  8. I. Cação, M. I. Falcão, H. R. Malonek, Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Math. Comput. Modelling 53:5–6 (2011), 1084–1094.

    Google Scholar 

  9. I. Cação, K. Gürlebeck, S. Bock, Complete orthonormal systems of spherical monogenics–A constructive approach. Methods of Complex and Clifford Analysis, (Proceedings of ICAM Hanoi 2004) (Le Hung Son, W. Tutschke, and S. Jain, eds.), SAS International Publications (2004).

  10. I. Cação, H. Malonek, Remarks on some properties of monogenics polynomials. ICNAAM2006. International Conference on Numerical Analysis and Applied Mathematics 2006, (T. E. Simos, G. Psihoyios and Ch. Tsitouras, eds., Wiley– VCH, Weinheim (2006) 596–599.

  11. I. Cação, H. Malonek, On complete sets of hypercomplex Appell polynomials. Numerical Analysis and Applied Mathematics (T. E. Simos, G. Psihoyios and Ch. Tsitouras, eds.), AIP Conference Proceedings 1048 American Institute of Physics (2008), 647–650.

  12. Fueter R.: Analytische Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 4, 9–20 (1932)

    Article  MathSciNet  Google Scholar 

  13. J. O. González, M. E. Luna, M. Shapiro, On the Bergman theory for solenoidal and irrotational vector fields, I: general theory. Oper. Theory Adv. Appl. 210, Birkhäuser Verlag, Basel (2010), 79–106.

  14. K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic Functions in the Plane and n–Dimensional Space. Birkhäuser Verlag, Basel–Boston–Berlin (2008).

  15. Gürlebeck K., Morais J., Cerejeiras P.: Borel–Carathéodory type theorem for monogenic functions. Complex Anal. Oper. Theory 1(3), 99–112 (2009)

    Article  Google Scholar 

  16. V. Kravchenko, Applied Quaternionic Analysis, Research and Exposition in Mathematics 28 Heldermann Verlag: Lemgo (2003).

  17. Lávička R.: Complete orthogonal Appell systems for spherical monogenics. Complex Anal. Oper. Theory 2(6), 477–489 (2012)

    Article  Google Scholar 

  18. H. R. Malonek and M. I. Falcão, Special monogenic polynomials–properties and applications. Numerical Analysis and Applied Mathematics (T.E. Simos and G. Psihoyios and Ch. Tsitouras, eds.), Melville, NY: American Institute of Physics (AIP), AIP Conference Proceedings 936 (2007), 764–767.

  19. H. R. Malonek, Power series representation for monogenic functions in \({\mathbb{R}^{n+1}}\) based on a permutational product. Complex Variables, Theory and Application 15 (1990), 181–191

  20. J. Morais, Approximation by homogeneous polynomial solutions of the Riesz system in \({\mathbb{R}^{3}}\). Doctoral dissertation, Bauhaus–Universität, Weimar (2009).

  21. Morais J., Gürlebeck K.: Real–part estimates for solutions of the Riesz system in \({\mathbb{R}^{3}}\). Complex Var. Elliptic Equ. 5(57), 505–522 (2012)

    Google Scholar 

  22. Morais J., Le H. T.: Orthogonal Appell systems of monogenic functions in the cylinder. Math. Meth. Appl. Sci 12(34), 1472–1486 (2011)

    Article  Google Scholar 

  23. Sudbery A.: Quaternionic analysis. Math. Proc. Cambridge Phil. Soc. 85, 199–225 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael Porter.

Additional information

Partially supported by CONACyT 166183.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Peña, C., Porter, R.M. Appell Bases for Monogenic Functions of Three Variables. Adv. Appl. Clifford Algebras 23, 547–560 (2013). https://doi.org/10.1007/s00006-013-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-013-0402-8

Keywords

Navigation