Skip to main content
Log in

A Two-Parameter Quantum (2+1)-Superspace and its Deformed Derivation Algebra as Hopf Superalgebra

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

As is well known, a Hopf algebra setting is an efficient tool to study some geometric structures such as the Maurer-Cartan invariant forms and the corresponding vector fields on a noncommutative space. In this study we introduce a two-parameter quantum (2+1)-superspace with a Hopf superalgebra structure.We also define some derivation operators acting on this quantum superspace, and we show that the algebra of these derivations is a Hopf superalgebra. Furthermore it will be shown how the derivation operators lead to a bicovariant differential calculus on the two- parameter quantum (2+1)-superspace. In conclusion, based on the bicovariant differential calculus, the Maurer-Cartan right invariant differential forms and the corresponding quantum Lie superalgebra are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Drinfeld, In: A. M. Gleason (Ed.), Proceedings International Congress of Mathematicians, 03-11 August 1986, Berkeley, California, USA (Amer. Math. Soc., 1988), 798–820.

  2. Jimbo M.: A q–analogue of U(gN+1.), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys. 11, 247–252 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Takhtajan L. A.: Quantum groups and integrables models. Adv. Stud. Pure Math. 19, 435–457 (1989)

    Google Scholar 

  4. Y. I. Manin, Quantum groups and noncommutative geometry(Centre de Reserches Mathematiques, Montreal, 1988).

  5. Manin Y. I.: Multiparemetric quantum deformation of the general linear supergroup. Commun. Math. Phys. 123, 163–175 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Woronowicz S. L.: Compact matrix pseudogroups. Commun. Math. Phys. 111, 613–665 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Faddeev L., Reshetikin N., Takhtajan L.: Quantization of Lie groups and Lie algebras. Alg. Anal. 1, 129–139 (1988)

    Google Scholar 

  8. Alvarez–Gaume L., Gomez C., Sierra G.: Duality and quantum groups. Nucl. Phys. B 330, 347–398 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Alvarez–Gaume L., Gomez C., Sierra G.: Quantum group interpretation of some conformal field theories. Phys. Lett. B 220, 142–152 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Moore G., Reshetikhin N.: A comment on quantum group symmetry in conformal field theory. Nucl. Phys. B. 328, 557–574 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  11. Zhang R. B., Gould M. D., Bracken A. J.: Quantum group invariants and link polynomials. Commun. Math. Phys. 137, 13–27 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  12. Majid S.: Fondation of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  13. Mourad J.: Linear connections in noncommutative geometry. Class. Quantum Grav. 12, 965–974 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Madore J.: An Introduction to Noncommutative Differential Geometry and Its Applications. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  15. Castro P. G., Chakraborty B., Kuznetsova Z., Toppan F.: Twist deformations of the supersymmetric quantum mechanics. Cent. Eur. J. Phys. 9, 841–851 (2011)

    Article  Google Scholar 

  16. Woronowicz S. L.: Differential calculus on compact matrix pseudogroups. Commun. Math. Phys. 122, 125–170 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Ubriaco M. R.: Non–commutative differential calculus and q–analysis. J. Phys. A: Math. Gen. 25, 169–173 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Wess J., Zumino B.: Covariant differential calculus on the quantum Hyperplane. Nucl. Phys. 18, 302–312 (1990)

    MathSciNet  Google Scholar 

  19. Brzezinski T.: Remark on bicovariant differential calculi and exterior Hopf algebras. Lett. Math. Phys. 27, 287–300 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Sudbery A.: Canonical differential calculus on quantum general linear groups and supergroups. Phys. Lett. B 284, 61–65 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  21. Kobayashi T., Uematsu T.: Differential calculus on the quantum superspace and deformation of phase space. Z. Phys. C 56, 193–200 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  22. El Hassouni A., Hassouni Y., Tahri E. H.: Differential calculi on the quantum superplane. Int. J. Th. Phys. 35, 2517–2525 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bouwknegt P., McCarthy J., Nieuwenhuizen P.: Fusing the coordinates of quantum superspace. Phys. Lett. B 394, 82–86 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  24. Aizawa N., Chakrabarti R.: Noncommutative geometry of super–Jordanian OSph(2/1) covariant quantum space. J. Math. Phys. 45, 1623–1638 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Falaki E. M., Tahri E. H.: Quantum supergroup structure of (1+1)– dimensional quantum superplane, its dual and its differential calculus. J. Phys. A;Math. Gen. 34, 3403–3412 (2001)

    Article  ADS  MATH  Google Scholar 

  26. Coquereaux R., Garcia A. O., Trinchero R.: Differential calculus and connections on a quantum plane at a cubic root of unity. Reviews in Mathematical Physics. 12, 227–285 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. El Baz M., El Hassouni A., Hassouni Y., Zakkari E. H.: The Two–parameter higher–order differential calculus and curvature on a quantum plane. Adv. Appl. Clifford Alg. 17, 651–662 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bentalha Z., Tahiri M.: A new approach in bicovariant differential calculus on SU q (2). Int. J. Geo. M. Mod. Phys. 4, 1087–1097 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Sudbery, Proceedings of the Workshop on Quantum Groups, (World Scientific, Singapore, 1991; J. Phys. A: Math. Gen 23 (1990), L967).

  30. Dobrev V. K.: Duality for the matrix quantum group GL pq (2). J. Math. Phys. 33, 3419–3431 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Abramov V.: Algebra forms with d n =  0 on quantum plane. Generalized Clifford algebra approach. Adv. Appl. Clifford Alg. 17, 577–588 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. P.Watts, Differential Geometry on Hopf Algebras and Quantum Groups(Ph.D. Thesis), hep–th/9412153v1.

  33. A. Borowiec and V. K. Kharchenko, First order optimum calculi. Bull. Soc. Sci. Lett. Lodz, 45, Ser. Recher. Deform. XIX (1995), 75–88.

  34. Ozavsar M.: Hopf algebra structure of (2+1)–dimensional quantum superspace, its dual and its differential calculus. Mod. Phys. Lett. A 25, 2241–2253 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. R. da Rocha, A. E. Bernardini and J. Vaz Jr., κ-deformed Poincare algebras and quantum Clifford-Hopf algebras. Int. J. Geom. Meth. Mod. Phys. 7 (2010) 821-836

    Google Scholar 

  36. Fauser B.: Quantum Clifford Hopf gebra for quantum field theory. Adv. Appl. Clifford Alg. 13, 115–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fauser B.: On the Hopf algebraic origin of Wick normal ordering. J. Phys. A: Math. Gen. 34, 105–115 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Schüler A.: Differential Hopf algebras on quantum groups of type A. J. Algebra 214, 479–518 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Kostant, Graded manifolds, graded Lie theory and prequantization. In: Differential geometric methods in mathematical physics. Lecture notes in mathematics, Vol. 570. Berlin, Heidelberg, New York: Springer 1977, 177–306.

  40. Dell J., Smolin L.: Graded Manifold Theory as the Geometry of Supersymmetry. Commun. Math. Phys. 66, 197–221 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. R. da Rocha and J. Vaz Jr., Extended Grassmann and Clifford Algebras. Adv. Appl. Clifford Alg. 16 (2006), 103-125.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muttalip Özavşar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özavşar, M. A Two-Parameter Quantum (2+1)-Superspace and its Deformed Derivation Algebra as Hopf Superalgebra. Adv. Appl. Clifford Algebras 23, 741–756 (2013). https://doi.org/10.1007/s00006-013-0394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-013-0394-4

Keywords

Navigation