Advances in Applied Clifford Algebras

, Volume 23, Issue 3, pp 701–739 | Cite as

Unbounded Normal Operators in Octonion Hilbert Spaces and Their Spectra



Affiliated and normal operators in octonion Hilbert spaces are studied. Theorems about their properties and of related algebras are demonstrated. Spectra of unbounded normal operators are investigated.


Non-commutative functional analysis hypercomplex numbers quaternion skew field octonion algebra operator operator algebra spectra spectral measure non-commutative integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Baez, The octonions. Bull. Amer. Mathem. Soc. 39: 2 (2002), 145-205.Google Scholar
  2. 2.
    F. Brackx, R. Delanghe, F. Sommen,Clifford analysis. (London: Pitman, 1982).Google Scholar
  3. 3.
    L.E. Dickson, The collected mathematical papers. Volumes 1-5 (Chelsea Publishing Co.: New York, 1975).Google Scholar
  4. 4.
    N. Dunford, J.C. Schwartz, Linear operators. (J. Wiley and Sons, Inc.: New York, 1966).Google Scholar
  5. 5.
    Emch G.: Méchanique quantique quaternionienne et Relativité restreinte. Helv. Phys. Acta 36, 739–788 (1963)MathSciNetMATHGoogle Scholar
  6. 6.
    R. Engelking, General topology. (Heldermann: Berlin, 1989).Google Scholar
  7. 7.
    J.E. Gilbert, M.A.M. Murray, Clifford algebras and Dirac operators in harmonic analysis. Cambr. studies in advanced Mathem. 26 (Cambr. Univ. Press: Cambridge, 1991).Google Scholar
  8. 8.
    P.R. Girard, Quaternions, Clifford algebras and relativistic Physics. (Birkhäuser: Basel, 2007).Google Scholar
  9. 9.
    K. Gürlebeck, W. Sprössig,Quaternionic analysis and elliptic boundary value problem. (Birkhäuser: Basel, 1990).Google Scholar
  10. 10.
    F. Gürsey, C.-H. Tze, On the role of division, Jordan and related algebras in particle physics. (World Scientific Publ. Co.: Singapore, 1996).Google Scholar
  11. 11.
    M. Junge, Q. Xu, Representation of certain homogeneous Hilbertian operator spaces and applications. Invent. Mathematicae 179: 1 (2010), 75-118.Google Scholar
  12. 12.
    R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras. (Acad. Press: New York, 1983).Google Scholar
  13. 13.
    I.L. Kantor, A.S. Solodovnikov, Hypercomplex numbers. (Springer-Verlag: Berlin, 1989).Google Scholar
  14. 14.
    R. Killip, B. Simon, Sum rules and spectral measures of Schrödinger operators with L 2 potentials. Annals of Mathematics 170: 2 (2009), 739-782.Google Scholar
  15. 15.
    R.S. Krausshar, J. Ryan, Some conformally flat spin manifolds, Dirac operators and automorphic forms. J. Math. Anal. Appl. 325 (2007), 359-376.Google Scholar
  16. 16.
    V.V. Kravchenko, On a new approach for solving Dirac equations with some potentials and Maxwell’s sytem in inhomogeoneous media. Operator Theory 121 (2001), 278-306.Google Scholar
  17. 17.
    K. Kuratowski, Topology. (Mir: Moscow, 1966).Google Scholar
  18. 18.
    S.V. Ludkovsky, F. van Oystaeyen, Differentiable functions of quaternion variables. Bull. Sci. Math. (Paris). Ser. 2. 127 (2003), 755-796.Google Scholar
  19. 19.
    S.V. Ludkovsky, Differentiable functions of Cayley-Dickson numbers and line integration. J. of Mathem. Sciences 141: 3 (2007), 1231-1298.Google Scholar
  20. 20.
    S.V. Ludkovsky. Algebras of operators in Banach spaces over the quaternion skew field and the octonion algebra. J. Mathem. Sciences 144: 4 (2008), 4301-4366.Google Scholar
  21. 21.
    S.V. Ludkovsky, Residues of functions of octonion variables. Far East Journal of Mathematical Sciences (FJMS), 39: 1 (2010), 65-104.Google Scholar
  22. 22.
    S.V. Ludkovsky, Analysis over Cayley-Dickson numbers and its applications. (LAP Lambert Academic Publishing: Saarbrn̎ucken, 2010).Google Scholar
  23. 23.
    S.V. Ludkovsky, W. Sproessig. Ordered representations of normal and superdifferential operators in quaternion and octonion Hilbert spaces. Adv. Appl. Clifford Alg. 20: 2 (2010), 321-342.Google Scholar
  24. 24.
    S.V. Ludkovsky, W. Sprössig, Spectral theory of super-differential operators of quaternion and octonion variables, Adv. Appl. Clifford Alg. 21: 1(2011), 165-191.Google Scholar
  25. 25.
    S.V. Ludkovsky, W. Sprössig, Spectral representations of operators in Hilbert spaces over quaternions and octonions, Complex Variables and Elliptic Equations 57: 12 (2012), 1301-1324, doi:10.1080/17476933.2010.538845.
  26. 26.
    S.V. Ludkovsky. Integration of vector hydrodynamical partial differential equations over octonions. Complex Variables and Elliptic Equations, online, doi:10.1080/17476933.2011.598930, 31 pages (2011).
  27. 27.
    S.V. Ludkovsky, Line integration of Dirac operators over octonions and Cayley-Dickson algebras. Computational Methods and Function Theory, 12:1 (2012), 279-306.Google Scholar
  28. 28.
    S.V. Ludkovsky, Operator algebras over Cayley-Dickson numbers. (LAP LAMBERT Academic Publishing AG & Co. KG: Saarbr¨ucken, 2011).Google Scholar
  29. 29.
    F. van Oystaeyen, Algebraic geometry for associative algebras. Series ”Lect. Notes in Pure and Appl. Mathem.“ 232 (Marcel Dekker: New York, 2000).Google Scholar
  30. 30.
    R.D. Schafer, An introduction to non-associative algebras. (Academic Press: New York, 1966).Google Scholar
  31. 31.
    S. Zelditch, Inverse spectral problem for analytic domains, II: Z2-symmetric domains. Advances in Mathematics 170: 1 (2009), 205-269.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of Applied MathematicsMoscow State Technical UnivMoscowRussian Federation

Personalised recommendations