Advances in Applied Clifford Algebras

, Volume 23, Issue 3, pp 673–688 | Cite as

On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions



In this paper, we investigate some properties of generalized Fibonacci quaternions and Fibonacci-Narayana quaternions in a generalized quaternion algebra.


Fibonacci quaternions generalized Fibonacci quaternions Fibonacci-Narayana quaternions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Allouche, T. Johnson, Nrayana’s Cows and Delayed Morphisms. Scholar
  2. 2.
    I. Cucurezeanu, Exercices in Arithmetics and Numbers Theory. Ed. Tehnică, Bucharest, 1976. [in Romanian]Google Scholar
  3. 3.
    T. V. Didkivska, M. V. St’opochkina, Properties of Fibonacci-Narayana numbers. In the World of Mathematics 9 (1) (2003), 29–36. [in Ukrainian]Google Scholar
  4. 4.
    A. Dress, R. Giegerich, S. Grűnewald, H. Wagner, Fibonacci-Cayley Numbers and Repetition Patterns in Genomic DNA. Ann. Comb. 7 (2003), 259–279.Google Scholar
  5. 5.
    Halici S.: On Fibonacci Quaternions. Adv. in Appl. Clifford Algebras 22((2), 321–327 (2012)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Horadam A.F.: A Generalized Fibonacci Sequence. Amer. Math. Monthly 68, 455–459 (1961)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Horadam A.F.: Complex Fibonacci Numbers and Fibonacci Quaternions. Amer. Math. Monthly 70, 289–291 (1963)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. Kak, The Golden Mean and the Physics of Aesthetics. Archive of Physics: physics/0411195, 2004,
  9. 9.
    T. Koshy, Fibonacci and Lucas Numbers with Applications. A Wiley-Interscience publication, U.S.A, 2001.Google Scholar
  10. 10.
    Singh P.: The So-called Fibonacci Numbers in Ancient and Medieval India. Historia Mathematica 12, 229–244 (1985)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Satyanarayana Murthy P.V.: Fibonacci-Cayley Numbers. The Fibonacci Quarterly 20(1), 59–64 (1982)MathSciNetMATHGoogle Scholar
  12. 12.
    A. N. Singh, On the use of series in Hindu mathematics. Osiris 1 1936, p. 606-628. (
  13. 13.
    Singh P.: The so-called Fibonacci numbers in ancient and medieval India. Historia Mathematica 12, 229–244 (1985)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    V. Shpakivskyi, On the one property of Fibonacci-Narayana numbers. Mathematics no. 11(359) (2006), 12–14. [in Ukrainian]Google Scholar
  15. 15.
    Swamy M.N.S.: On generalized Fibonacci Quaternions. The Fibonacci Quaterly 11((5), 547–549 (1973)MathSciNetMATHGoogle Scholar
  16. 16.
    A. P. Yushkevich, History of Mathematics in the Middle Ages. Gos. izd. fiz.- mat. lit., Moskow, 1961.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceOvidius UniversityConstantaRomania
  2. 2.Department of Complex Analysis and Potential TheoryInstitute of Mathematics of the National Academy of Sciences of UkraineKiev-4Ukraine

Personalised recommendations