Skip to main content
Log in

Localized Propagating Tachyons in Extended Relativity Theories

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We examine the possibility of localized propagating tachyonic fields within a properly extended relativity. A possible extension is to include superluminal transformations and reference frames. This leads to complex 4 D spacetime, or real 8D spacetime M 4,4. The mass shell constraint in M 4,4 becomes, after first quantization, the ultrahyperbolic Klein-Gordon equation. The Cauchy problem for such equation is not well posed, because it is not possible to freely specify initial data on a 7D hypersurface of M 4,4. We explicitly demonstrate that it is possible to do it on a space-like 4-surface for bradyons, and on a time-like 4-surface for tachyons. But then the evolution of a bradyonic field into the four timelike directions, or the “evolution” of a tachyonic field into the four spacelike directions, is not uniquely determined.We argue that this is perhaps no so bad, because in quantum field theory (after second quantization) the classical trajectories of fields are not determined anyway, and so it does not matter, if they are not completely determined already in the first quantized theory. A next possible extension of relativity is to consider 16D Clifford space, C, a space whose elements are oriented r-volumes, r = 0, 1, 2, 3,4 of real 4D spacetime. Then the evolution parameter can be associated with an extra light-cone coordinate, e.g., with the sum of the scalar and the pseudoscalar coordinate, and initial data can be given on a light-like hypersurface, in which case the Cauchy problem is well posed. This procedure brings us to the Stueckelberg theory which contains localized propagating tachyons in 4D spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Adam, et al. [OPERA Collaboration], Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. arXiv:1109.4897 [hep-ex]

  2. Bilaniuk M.P., Deshpande V.K., Sudarshan E.C.G.: American Journ. Phys. 30, 718 (1962)

    MathSciNet  Google Scholar 

  3. G. Feinberg, Phys. Rev. 159 (1967), 1089.

    Google Scholar 

  4. M. E. Arons and E. C. G. Sudarshan, Phys. Rev 173 (1968), 1622.

    Google Scholar 

  5. J. Dhar and E. C. G. Sudarshan, Phys. Rev. 174 (1968), 1808.

    Google Scholar 

  6. M. Pavšič, The extended special theory of relativity. Preprint, 1971 (Unpublished) http://www-f1.ijs.si/~pavsic/ExtenRel71.pdf

  7. E. Recami and R. Mignani, Riv. Nuov. Cim. 4 (1974), 209.

  8. E. Recami, Riv. Nuov. Cim. 9 (1986), 1.

    Google Scholar 

  9. A. F. Antippa, Nuov. Cim. A 10 (1972), 389.

    Google Scholar 

  10. W. A. Rodrigues, Jr. and J. Vaz, Jr., Subluminal and Superluminal electromagnetic Waves and the Lepton Mass Spectrum. arXiv hep-th/9607231.

  11. D. Shay and K. L. Miller, Nuov. Cim. A 38 (1977), 490.

  12. L. Robinett, Phys. Rev. D 18 (1978), 3610.

  13. R. Mignani and E. Recami, Lett. Nuov. Cim. 24 (1976), 171.

    Google Scholar 

  14. E. A. B. Cole, Nuov. Cim. A 40 (1977), 171.

    Google Scholar 

  15. E. A. B. Cole, J. Phys. A 13 (1980), 109.

    Google Scholar 

  16. M. Pavšič, J. Phys. A 14 (1981), 3217.

    Google Scholar 

  17. M. Tegmark, Class. Quant. Grav. 14 (1997), L69.

  18. C. Castro and M. Pavšič, Progress in Physics 1 (2005), 31.

  19. C. Castro and M. Pavšič, Phys. Lett. B 559 (2003), 74.

  20. W. M. Pezzaglia and A. W. Differ, Adv. Cliff. Alg. Proc. Suppl. 4 (S1) (1994), 437.

  21. M. Pavšič, Phys. Lett. B 614 (2005), 85 [hep-th/0412255].

  22. M. Pavšič, Int. J. Mod. Phys. A 21 (2006), 5905 [gr-qc/0507053].

  23. S. Ansoldi, A. Aurilia, C. Castro, and E. Spallucci, Phys. Rev. D 64 (2001), 026003 [hep-th/0105027].

  24. A. Aurilia, S. Ansoldi, and E. Spallucci, Class. Quant. Grav. 19 (2002), 3207.

    Google Scholar 

  25. M. Pavšič, Found. Phys 33 (2003), 1277 [gr-qc/0211085].

  26. M. Pavšič, Phys. Lett. B 692 (2010), 212 [arXiv:1005.1500 [hep-th]].

  27. M. Pavšič, Found. Phys. 37 (2007), 1197.

    Google Scholar 

  28. M. Pavšič, The Landscape of Theoretical Physics: A Global View; From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle. Kluwer, 2001.

  29. A. Chodos, A. I. Hauser, and V. A. Kosteleck’y, Phys. Lett. B 150 (1985), 431.

    Google Scholar 

  30. U. D. Jentschura and B. J. Wundt, From Generalized Dirac Equations to a Candidate for Dark Energy. arXiv:1205.0521 [hep-ph].

  31. U. D. Jentschura and B. J. Wundt, J. Phys. A 45 (2012), 444017 [arXiv:1110.4171 [hep-ph]].

  32. A. O. Barut, Space-Like States in Relativistic Quantum Theory. In Tachyons, Monopoles, and Related Topics, Ed. E. Recami, North-Holland, 1978.

  33. V. Vyšín, Nuov. Cim. A 40 (1977), 113.

    Google Scholar 

  34. V. Vyšín, Nuov. Cim. A 40 (1977), 125.

    Google Scholar 

  35. http://wiki.physics.fsu.edu/wiki/index.php/Klein-Gordon_equation

  36. R. Mignani and E. Recami, Nuov. Cim. A 14 (1973), 169.

  37. B. S. Rajput and O. P. S. Cox, Phys. Lett. B 113 (1982), 183.

    Google Scholar 

  38. V. Majernik, Found. Phys. 10 (1997), 357.

  39. M. C. Pant, P. S. Bisht, O. P. S. Negi, B. S. Rajput, Can. J. Phys. 78 (2000), 303.

    Google Scholar 

  40. R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. 1 and 2, Interscience, London, 1953

  41. D. Hestenes, Space-Time Algebra. Gordon and Breach, 1966.

  42. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus. D.Reidel, 1984.

  43. J. R. Fanchi, Found. Phys. 23 (1993), 287, and many references therein.

  44. J. R. Fanchi, Parametrized Relativistic Quantum Theory. Kluwer, 1993.

  45. U. D. Jentschura and B. J. Wundt, Eur. Phys. J. C 72 (2012), 1894. [arXiv:1201.0359 [hep-ph]].

  46. T. Chang, A new Dirac-type equation for tachyonic neutrinos. arXiv:hepth/ 0011087.

  47. U. D. Jentschura, J. Mod. Phys. 3 (2012), 887.

    Google Scholar 

  48. M. Pavšič M, Found. Phys. 21 (1991), 1005.

    Google Scholar 

  49. M. Pavšič, Lett. Nuov. Cim. 30 (1981), 111.

    Google Scholar 

  50. D. Deutsch, Phys. Rev. D 44 (1991), 3197.

    Google Scholar 

  51. H. Everett III, Rev. Mod. Phys. 29 (1957), 454.

  52. H. Everett III, 1973 The theory of the universal wave function. In The Many- Worlds Interpretation of Quantum Mechanics. Ed. B. S. DeWitt and N. Graham, Princeton University Press, 1973.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Pavšič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavšič, M. Localized Propagating Tachyons in Extended Relativity Theories. Adv. Appl. Clifford Algebras 23, 469–495 (2013). https://doi.org/10.1007/s00006-013-0381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-013-0381-9

Keywords

Navigation