Skip to main content
Log in

Optimal Trajectory Tracking of Underwater Vehicle-Manipulator Systems Through the Clifford Algebras and of the Davies Method

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The manipulation in singular regions generates an instantaneous reduction in the mechanism mobility which can result in some disturbances in the trajectory tracking. In proximity of the singularities, small velocities in the end-effectors generates high speeds in the joints due to the gradual reduction of the mobility. The phenomenon of kinematic singularity generates a instantaneous instability in torque profile of the redundant robotic systems by the transformation of secondary joints to primary joints. The disturbances of the underwater environment intensifies the effects of the kinematic singularities because the hydrodynamic strongly oppose to torque variations. This work presents a methodology for using dual quaternions in the posture feedback of a Underwater Vehicle-Manipulator System (UVMS) using the Davies method which avoids kinematic singularities and ensures the optimal torque profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soylu S., Buckham B. J., Podhorodeski R. P.: Redundancy resolution for underwater mobile manipulators. Ocean Engineering 37, 325–343 (2010)

    Article  Google Scholar 

  2. From P. J., Duindam V., Pettersen K. Y., Gravdahl J. T., Sastry S.: Singularity-free dynamic equations of vehicle-manipulator systems. Simulation Modelling Practice and Theory 18, 712–731 (2010)

    Article  Google Scholar 

  3. Nagi F., Ahmed S.K., Abidin A.A. Z., Nordin F.H.: Fuzzy bang-bang relay controller for satellite attitude control system. Fuzzy Sets and Systems 161, 2104–2125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. ErdongJ. Zhaowei S.: Passivity-based control for a flexible spacecraft in the presence of disturbances. International Journal of Non-Linear Mechanics 45, 348–356 (2010)

    Article  ADS  Google Scholar 

  5. Xu W., Li C., Wang, Liu Y., Liang B., Xu Y.: Study on non-holonomic cartesian path planning of a free-floating space robotic system. Advanced Robotics 23, 113–143 (2009)

    Article  Google Scholar 

  6. Sahu S., Biswal B.B., Subudhi B.: A novel method for representing robot kinematics using quaternion theory. IEEE Sponsored Conference on Computational Intelligence, Control And Computer Vision In Robotics & Automation 03, 10–17 (2008)

    Google Scholar 

  7. Qiao S., Liao Q., Wei S., Su H.: Inverse kinematic analysis of the general 6r serial manipulators based on double quaternions. Mechanism and Machine Theory 45, 193–199 (2010)

    Article  MATH  Google Scholar 

  8. Santos C.H.F., Guenther R., Martins D., De Pieri E.R.: Virtual kinematic chains to solve the underwater vehicle-manipulator systems redundancy. Journal of the Brazilian Society of Mechanical Sciences and Engineering 28, 354–361 (2006)

    Google Scholar 

  9. Johnson S.M., Williams J.R., Cook B.K.: On the application of quaternionbased approaches in discrete element methods. Engineering Computations: Internation Journal for Computer-Aided Engineering 26, 610–620 (2009)

    Article  Google Scholar 

  10. Zamora-Esquivel J., Bayro-Corrochano E.: Robot perception and handling actions using the conformal geometric algebra framework. Advances in Applied Clifford Algebras 20, 959–990 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hildenbrand D., Zamora J., Bayro-Corrochano E.: Inverse kinematics computation in computer graphics and robotics using conformal geometric algebra. Advances in Applied Clifford Algebras 18, 698–713 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campos A., Guenther R., Martins D.: Differential kinematics of serial manipulators using virtual chains. Journal of the Brazilian Society of Mechanical Sciences and Engineering 27, 345–356 (2005)

    Article  Google Scholar 

  13. B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: modelling, planning and control. Springer Verlag, 2008.

  14. Simas H., Guenther R., da Cruz DFM, Martins D.: A new method to solve robot inverse kinematics using assur virtual chains. Robotica Cambridge Univ Press 27, 1017–1026 (2009)

    Article  Google Scholar 

  15. Chyba M., Haberkorn T., Singh S.B., Smith R.N., Choi S.K.: Increasing underwater vehicle autonomy by reducing energy consumption. Ocean Engineering 36, 62–73 (2009)

    Article  Google Scholar 

  16. Dunbabin M., Corke P., Vasilescu I., Rus D.: Experiments with cooperative control of underwater robots. The International Journal of Robotics Research 28, 815–833 (2009)

    Article  Google Scholar 

  17. Selig J.M.: Clifford algebra of points, lines and planes. Robotica, Cambridge Univ Press 18, 545–556 (2001)

    Article  Google Scholar 

  18. L.W. Tsai. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley-Interscience, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, A., De Pieri, E. & Moreno, U. Optimal Trajectory Tracking of Underwater Vehicle-Manipulator Systems Through the Clifford Algebras and of the Davies Method. Adv. Appl. Clifford Algebras 23, 453–467 (2013). https://doi.org/10.1007/s00006-013-0380-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-013-0380-x

Keywords

Navigation